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Process Dynamics Notes by Prof. Richard K. Herz, UCSD <herz@ucsd.edu>

1. Introduction to Process Control and Process Models

@ Feedback Control - measure the control Schematic Diagram
(output) variable and take action to bring
control variable back to set point. Can't get
"perfect" control since action taken only
when there are devations from the set point,
but handles changes in any input variable.

@ Feedforward Control - measure an input
variable and take action to keep control
variable at set point. Can get "perfect"
control but only corrects for change in the Ti
measured input variable, not changes in
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Process Dynamics Notes Bychard K. Herzrherz@ucsd.edu, ReactorLab.net

Ou Problem Statement:

We consder linear processe s (proce sse sthat can be desciibed by inear
differential equations wit c onstant coefficie nts) or nonlinear proc ess es that

have been lire arize dabout the normal steady-sta e opeting condtions.

There may be several inputs {ndependent variables) and several ouputs
(depe ndent variables). Here, we conside a change inone nput variable and
the re sponse ofone aitput varabke . Processes may be simple ormay be

complke xnetworksof simple processes:

INPUT LINEAR PROCESS OUTPUT

—| > |—

Also “forcing function.” Simple process
May be the outputof an This output may become the inputto a
"upstream" process or "downstream" process or process subunit.

process subuni.

INPUT LINEAR PROCESS OUTPUT

— | 2O —

Complex process composed of
network ofsimple processes

There are three elementsto the problem : input, pocess, output In general we will know

twoekments andhave tofindthe third. Spe cific objectives will be to:

(1) predictthe ouput given aninputanda process,

(2) design a control system for a process hat will give the desre d output inresponse toa
given input (e.g., maintan current ouput, within aspecfied band,in responseto aunit

step nput),

(3) detem ne whatthe inie nal stucture ofthe pocess is, given pairsof inputs and

oufputs.
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Suggested procedure for developing process models:

1.

2.

Draw process schematic ("sketch"), plus block diagram for control problems.

Label sketch variables and parameterstivdimensions ("units").

List and justify assumptions.

Identify independent (input) and dependent (control, output) variables.

Identify "control volume" for conservation equations ("balances").

Write conservation equations:

1) word equatn first (e.g., accum = inout + generation)

2) write math terms under word equation

3) check units (helps to catch any parameters left out)

4) check signs (set all but 2 terms to zero and see if signs make sense, repeat until all
terms are checkegd

Check degrees of freedomg,No see if system is exactly specified:

Nk = Ny - Ne = 0? where N = no. of variables andd\= no. of equations,

where N includes conservation equations and equations specifying the time variation of

input variables.

Linearize nonlinear equations if necessary.

Define dimensionless variables, or dimensionless deviation variables for control problems,

and make equations dimensionless. Write a word definition of the dimensionless parameter
groups which result.

Reasons for making equations dimensionless:

simplifies writing equations, reduces clutter

easier to see general mathematical form of equation

get insight from dimensionless groups, see that only the parameter groups are important,
not individual pareneters

reduces the number of times you have to solve equations
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Summary of Equations for Simple Heated Stirred Tank:

Assume that the response of electrical heating elensettsst”" with respect to the response of
the liquid temperature in the tafike., elements have negligible heat capacity).

Input Variables: T(t) [K, temperature of inlet fluid], Q(t) [J/s, heat inpubrn electrical heater
element],T4(t) [K, average temperature of heat transfer fluid @areeA]

Output Variable: T(t) [K, temperature of fluid in tank and outlet fluid].

Constants: w [kg/s, mass flow rate], Vnvolume of fluid],! [kg/m? density of fluid], C
[J/(kg K), average maskeat capacity of fluid]U [J/(s- m® - K), heat transfer coefficierdver
areaA], A [m? heat transfer area]

Energy Balance on Fluid in Tank:

pVC% =wC([,-T)+Q-UA(T-T,) (1-1)

Energy balance with all variables except time t matiedimensionless deviation variables:

dr™
dt

+p+ )T = g™ + 9O + 9T (1-2)

initial conditions: at ¢ =0,7* = 0,7 =0,0" =0,7* =0
Dimensionless Deviation Variabtes
superscript® represers adeviation variable, deviation from normal steadste
bar over variable represents value at normal ststatg conditions
superscript representsdimensionless variable
note there are ways to define these variables other than those shown here
SR R 0-0

TA = T;.A — i i TaA —_‘a “~a_ QA* - _
T;max _ T T;max _ T T;max _ T Wc‘z’:max _ T’

= KV = rate coefficient foheating/cooling by flow in and o(t/s)
P

y = % = rate coefficient for heating/cooling by heat trangiés)
P
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Time t can also be made dimensionJessshown belowhut we usually don't do that in process
control.

2. Solution of Linear Differential Equations
2.1. Linear Differential Equations

In this course we will learn some methods for analyzing the dynamics of physical systems. By
"dynamics,"” we mean how the systems change with time. Specifically, we will learn tools for
analyzing Inear dynamic systems. Linear dynamic systems vary with time and can be described
by linear differential equations. A differential equation of order n is linear if it can be written in
the following form:

YO O+ a , ©y®™ O+ a, ©y"P O+..+ a,®y O+ a OyoO+ aj®yO=fO (2.1-1)

where v, y", ¥V, and ¥ are rivatives of y(t), with respect to t, of order 1, 21,nand n,
respectively, and the@ are coefficients that are functions of t only.

The equation is linear because the dependent variable y(t) and its derivatives do not appear
in products with themselves or with other variables.

For example, the termg,yyy', or x(t)y(t) do not appear. The independent variable t will refer to
time in this course, although this is not necessarily the case, in genemterirhon the right
hand sidef(t), does notontain the dependent variable y(t) or any of its derivatives and is called
the nonhomogeneous term or "forcing function."

The primary tool we will become familiar with for solving linear differential equations, the
Laplace transform, is usually only sale for solving linear differential equationsth constant
coefficients

yO O+ a, y®™ O+ a, y®» O+.+ a, y'O+ a, y®O+ a;y®O=f0® (2.1-2)

n

"Real systems are nonlinear, to varying degrees."

We will consider perturbations of systems from initial operating conditions and control of
systems about desired opengticonditions. For "small” deviations from the initial or desired
operating conditions, real systems can be considered approximately linear. The more nonlinear a
system is, the smaller the deviations must be for approximately linear behavior.

For relatiwely linear systems, the deviations for which the system is approximately linear can be
relatively large, and reasonable assumptions can be made such that linear conservation equations
can be set up at the start of the analysis. However, it is alwayslaldvie remember that
nonlinear behavior will be obtained when large perturbations are applied.

For relatively nonlinear systems, the conservation equations set up at the beginning of the

analysis will be nonlinear. In these cases, the original equatioss be linearized about the
initial or desired operating conditions in order to apply the methods discussed below. The
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linearized equations will provide a good approximate description of the dynamic behavior of the
system only for small deviations frotnet initial or desired operating conditions.

2.2. Linearization

Consider a system described by the following equation in which y(t) is the output variable (e.g.,
temperature of fluid in a tank), x(t) is the input variable (e.g., heater input), and gya) i
nonlinear function of y and x:

dy
—=1y.x

dt (2.2-1)

This equation can be linearized by using the-firster terms of a Taylor expansion:

F) = £(5y) % -7+ % (x=x) (2.22)

where the reference point for linearization is the normal stetadg operating poir(t;, ;).

By definition, at the normal steadyate operating point,

- — dy
y- y)=0, (x- x)=0, and —=flyx)=0
dt

Therefore(¥-*) = 0.

Definitions of "deviation variables" are automatically produced by the expansion:

yAog-  F) an Ao O (2.23)

Here, a delta is used to denote the deviation variablesr thte the prime used by Seborg, et
al., in order to avoid confusion with the notation used here for first derivatives.

Since

dt dt (2.2-4)

The linearized form of Eqn. (2.2) becomes:

vt _of

xt 2.2-5
dt  9y| ( )

N

s O
+ —_
Y ox
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where the normal steaebtate operating@nt is now denoted by "s" rather thi&,;). See
Seborg, et al., p. 87, for cases which involve additional input vasiable

An example is:

dy

— = a,yl+ a,xy + a.>+ a, x2
1 2 3 4

dt y (2 . 2'6)

A -
dy - - X
—= [2a,y+ a,x- a,—
dt y2

A

— a -]
3 A
yo+ fa,y+ —+2 a,x|x

y (2.2-7)

where a- &, are constants. Systems of more than one differential equatioalso be linearized
by the same procedure. For a tequation, threeariable system, for example:

dy
— =1(x.y,2)

@ (2.2-8)
dx _ Xy
e (2.2:9)

where x(t) and y(t) are dependent variables and z(t) is an independent input variable. The
linearized forms are:

A
&t ] ]

z* (2.210)
dr  9y|, ox 0z

s

dx®  dg| . dg| . og
dr  ay|, ox dz

z* (2.2-11)

2.3. Dimensionless and Deviation Variables

In the analysis of simple dynamic systems, you may be able to work with your balance equations
in terms of the original variables. In most cases, howevarywylbwant to convert the variables

into either dimensionless variables, deviation variables, or dimensionless deviation variables.

Making a system of equations dimensionless

- simplifies the equations so you can see their fundamental mathematical famas m
easily,

- provides insight by showing you that only dimensionless groups of parameters are
important, not individual parameters,

- often scales variables so they have values between 0 and * 1.
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Defining deviation or dimensionless deviation variablesvedl you to easily see when a system
is running at the desired operating conditions and when it is deviating from these conditions.

Dimensionless variables:

A general definition of dimensionless variables is:

. y y y-y
y = e—or or or etc.
yC

© . v Yo Ya (2.31)

where

Yo Ye1, @and ¥, are charactéstic constant values of the variable y(t), and whekeagd
Ye2 are often the minimum and maximum values, respectively, of y(t) that will be
encountered,

(9)c Is a characteristic constant value of a parameter group with the same dimensions as
y(t).

When making time dimensionless, the constant value of a parameter group with the dimension of
time is used. Select this constant parameter group in order to achieve the maximum
simplification of the form of the most important differential equation in thdéesys For
example, one form of the energy balance for an electrically heated stirred tank with a "fast
response” heating element is:

dT
—_—

dt

w UA
+

1) N
Pv  Pcv <

Pcv }

A | ¢

Pev | (2.32)

W_Ti+
Pv

Note that the dimension of the group (W/+ UA/! CV) is (1/time). Thus, the inverse of this
group is a constant, or t, that can be used to define a dimensionless timayhich results in a
simple form of the equation:

T T T
LU R e I et Jos [Tua \Tamb
dr v Pev | Pcv } (2.33)
where
t" = t— where T- 1—: a onstant value
T w + UA
Pv  Pcv

Be careful to check the definition of symbols when reading equations. Often the dimensionless
time is bbeled t, rather than the characteristic time constant.

Deviation Variables:

A general definition of deviation variables is:

Richard Herz, rherz@ucsd.edu, ReactorLab.net



Process Dynamics 9

A

yi=y-y (2.34)

where” is the constant value of y (t) at the "normal stesidye operating conditions." These

are the conditions that the system usually runs at, or is designed to run at, or that you want to
control the system to run at. Note that the deviation variable here is not dimensionless and has
the same dimensions as y(t). Note also that deviation \esiahn take on negative values even
when the original variables can't. Explicit definition of a deviation time variable is not usually
done since we usually implicitly think of our analysis starting at t = 006t

Deviation variables are often usethen considering the dynamic behavior of processes and the
control of processes. If all the values of the deviation variables in a particular system are at zero,
you know immediately that the system is running where it should.

Note that deviation varialdeare automatically defined when linearizing a system of nonlinear
equations. Deviation variables can also be defined for a system of equations which are already
linear.

Deviation variables are especially useful when using Laplace transforms to analyziera.

The following are the Laplace transforms of the first and second derivatives, with respect to
time, of the variable y(t):

Ly ]=s L[v]-o (2.35)

Lly' = s2 L[y]-syo-yo (2.36)
We usually consider systems "initially at rest,” that is, systems that are at their normal steady
stateoperating conditions at t = 0. So, when y(t) is defined as a deviation variable, y(0) = 0.

Since, for a system initially at rest, y'(0) = 0, y"(0) = 0, and so forth for higher derivatives, the
above expressions become:

Ly*']=s[y"] (2.37)
Ly*" 1 =s"L[y"] (2.38)

Thus, when deviation variables are used, an "s" in a transfer function is a "marker" for a first
derivative and an % is a marker for a second derivative, etc. Laplace transforms are discussed
in detail below.

Dimensionéss Deviation Variables:

A general definition of dimensionless deviation variables is:

yA*=y*_;*=y_y or y_y or y_y etC (23—9)

yc (g)c yc2_ycl

where
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¥ " is the constant value of {t) at the "normal steadstate operating conditions,"

¥ is the constant value of y (t) at theormal steadystate operating conditions,"

Yo Ye1, @and Yy, are constant values of y(t), and whege gnd y, are often the constant
minimum and maximum values, respectively, of y(t) that will be encountered

(9)c Is a characteristic constant valueaoparameter group with the same dimensions as
y(t).

Note that dimensionless deviation variables can take on negative values even when the original
variables can't. Explicit definition of a deviation time variable is not usually done since we
usually implcitly think of our analysis starting at$ 0.

The same simplification of Laplace transforms discussed above for deviation variables will also
be obtained for dimensionless deviation variables.

Note that dimensionless deviation variables are automatidefiged when linearizing a system
of nonlinear dimensionless equations. Deviation variables can also be defined for a system of
dimensionless equations which are already linear.

Notes on Procedure:

From the definitions given above, you can see thaetivdl be several options for defining each
dimensionless variable or dimensionless deviation variable. For each variable, list the options
that you can think of. Select one definition for each variable using the following criteria:

- The definition simpfies the form of the most important equations in the system. This
criterion is especially useful when selecting a constant parameter group for making time
dimensionless; see the example given above.

- The definition makes physical sense, that is, youdsscribe it qualitatively and simply
in words.

- The definitions scale variables other than time such that they vary between + 1.

Take the selected definitions and rearrange them so that you have an equation expressing what
each variable is equal to iartns of the new variable and the constants involved. For example,

y= y'y_+ vy,
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y=vy"(g), +y, etc. (2.3-10)

Then plug the definition for each of the original variables into the original equations and
simplify. You may wantto also try other options for defining one or more of the new
dimensionless variables.

After you rearrange the resulting equations into a simple form, you will note that there are
groups of the original constant parameters and these groups are dimeasiowete out a
gualitative "word definition" of what each dimensionless parameter group represents. For a list
of dimensionless parameter groups (or "dimensionless parameters,” "dimensionless groups" or
"dimensionless numbers") see D. F. Boucher anfl. @lves, "Dimensionless Number&hem.

Eng. Progr. 559), 5564 (1959).

2.4. Integrating Factor Approach for First -Order Linear Equations

Consider a physical system, such as a heated stirred tank or a stirred tank witeacting
chemical in the fed, which can be described by the general form of a-didgr linear
differential equation with constant coefficient:

dy(t)
+ay() =f()

dt

or
y' +ay =f (2.41)

The initial condition specified here is y(0) = 0. This is the initial condition for a system that is
referred to as "initially at rest". For the heated stirred tank, y(t) represents the deviation of the
fluid temperature from the initial (e.g., steashate) temperature. For a stirred tank with an inert
dye in the feed, y(t) represents the deviation of the clyncentration from the initial (e.g.,
steadystate) concentration. The function f(t) is called the "nonhomogeneous term" of the
equation and also the "forcing function" of the physical system represented by E«). (Ear

the heated stirred tank})(s associated with the energy input with the inlet fluid and through the
heating element. For the stirred tank with an inert dye in the feed, f(t) is associated with the dye
in the inlet fluid.

Our goal is to solve Eqgn. (23 to find y(t) for a giverparameter "a" and a given f(t).
The homogeneous form of this equation is
yn +aw=0 (2.4-2)

with the initial condition specified here to bg@ = 1. The solution to this homogeneous
equation is

yn(t) = e (2.4-3)
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and is represented below agtyor yh.

We can see that in order to solve Eqn. {B.Awe will need to integrate it. The "integrating
factor" approach to solving this type of equation involves dividing Eqn:1(Rthrough by y
before integrating:

y o g

Y h Y (2.4-4)
oo 4 [y ]= f

RTINS 7 T (2.45)

t
y(0) f2)
o Yy O+ y, (@ 2 dz
y y
h , M (24—6)

where "z" is the dummy integration variable for "t" in the integral. For the initial conditions we
have specified here, y(0) = 0 ang0) = 1, this solution is

t
f(2)
yO) = vy, 0 2 dz
y
o (2.47)

We have found the solution to the general {inster linear differential equation thi constant
coefficient, however, the integrating factor approach won't work for higher order equations. To
solve highetorder equations, we will learn about Laplace transforms.

For the specific initial conditions and Eqn. (A}given here, the homogemes solution is y(t)
= e® Therefore, Eqn. (2-4) is also equal to

t t
y@® = ] f@ y,(t-z2)dz = ] Y, (2 ft-2dz
: : (2.4-8)

The integral in Eqn. (2-8) is called a "convolution integral.” Eqn. (8% shows that the
solution y(t) is equal toyft) convoluted with f(t). This is also represenged

y(t) = £(8) = yn(t) = yn(t) - (1) (2.49)

where the symbol ", the "convolution operator”, represents convolution and not simple
multiplication.

In general, for two functions g(t) and h(t), convolution is defined by:

t t
g®) «h()= I g(2) h(t - 2) dz = ’ h(2) ot - 2) dz =h®  «9(®
: : (2.4-10)
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Convolution is an irmortant concept and we will use it later in the general solution of linear
systems.

2.5. Laplace Transform Approach for First- and Higher-Order Equations

Often during the course of solving problems, a "transformation” of the problem from its original
"domain” into a new domain makes the solution of the problem easier. The procedure is to
transform the problem into the new domain, solve the problem in the new domain, and then
"inverse transform” or "back transform" the solution in the new domain intouicsoin the
original domain of the problem. In a sense, you do this every time you solve an engineering
problem: you transform a statement of the problem written or spoken in words into a
mathematical model, solve the mathematical model, and then ledt®e results of the
mathematical solution in words.

. i ) solve . i
New Do main: Problem in New Domain — p Solution n New Domain
Apply Tri]sform Apply Inverse Transform
| \
Original Domain: Original Problem — X p Solution of Original Problem

Solution of a complex system of linear differential equations by analytical integration can be
difficult. In this section, we will learn that such a complex system can be solved more easily by
first transforming the system of linear differential equations into a system of algebraic equations
in a new domain, solving the algebraic equations in the new domain, and thdrabatkrming

to get the final solution in the original domain.

The integratingdctor approach can be considered as involving a "transformation” of our starting
Eqgn. (2.41), which is the general form of firstder linear differential equations with constant
coefficient. The "integrating factor transforth'is defined by

t
| ] y®
* Iy(l= dt
y,®
0 (2.51)

with the initial conditions y(0) = 0 and,(@) = 1. That is, the transforthinvolves dividing by
yn and integrating from 0 to t. The transfofnapplied to Eqgn. (24) is

t t t
| { y'(® , ayt) I f®
[y t+ay=f]= dt + dt = dt
Yy, Yy, AN()
0 h 0 h 0 h (25‘2)

Since y(t) = €%, the" transform can atsbe written as
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' yor= f yo) estdt
: (2.53)

This transform allows us to solve fistder linear differential equations. However, this
approach doesn't work, in general, for second and higher order equations.

For solution of complex linear differential equations, a déifer transform, the Laplace
transform, L, provides a more powerful approach. The Laplace transform of the arbitrary
function g(t) is defined by

"

NEOE I gl est dt
. (2.54)

NOTE TYPO: this is an integrabver all timefrom t = 0 to infinity, where the boat the upper
limit of integrationin the equation here dibelow should bé .

Just as the integrating factor approach introduced above can be considered a "transform", e
the Laplace transform can be considered an "integrating factor.”

The Laplacdransformation of a linear differential equation essentially involves integrations that
remove derivatives from the equation and converts the problem into the solution of algebraic
equation (followed finally by an inverse transformation). For a linefierdntial equation
involving the dependent variable y(t), the algebraic equation resulting from application of the
Laplace transform to the differential equation is solved for L[y(t)]. Then the inverse transform is
applied to the algebraic equation irer to obtain the solution y(t).

"The Laplace Transform converts a system of linear differential equations with constant
coefficients into a system of algebraic equations."

It is interesting to try to imagine what Laplace's thought process was when ngethviee
Laplace transform. Let's imagine that he was first aware that the integrating factor-fancrst
linear equations removed the derivative by multiplying the original equation by a function and
then integrating. His goal then was to deternitieere was some other function and integration
limits that would remove both first and highander derivatives from differential equations.

The critical step for Laplace to accomplish was to find a transform that would convert the
derivative of an arbiary function, g'(t), into an expression in terms of the transform of g(t). This
same transform, through a stefse process, would convert g"(t) into an expression in terms of
the transform of g'(t), which then could be expressed in terms of the trarasffg(t). Thus, all
derivatives of a function or variable could be converted into a transform of the original function
or variable.

Laplace undoubtedly tried many things. In one of his trials, imagine that he multiplied the
function he wanted to trarin, g(t), by an unknown function u(t) and took the derivative of
their product:
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g
dt dt dt (2.55)

We know this derivative from our math tables, so we can take over from Laplace from here.
Now integrate from some currently unknown lower limit, LL, to some ctlgreimknown upper
limit, UL.

UL

UL
UL , ,
ug |LL = ug'dt  + gu'dt
LL LL (2-5-6)

Rearranging,

UL UL
uL
l ug'dt = ug lu_ - f gu'dt
LL LL (2 . 5'7)

We can see that the LHS of the equation will define our transform of g'(t) since the RHS of the
eqguation does not involve g'(t), showing that we can successfully remove g'(t) from our problem.
We are definitely on the right track. All we have to do now is to pick a "convenient" u(t) and
"convenient" limits UL and LL. After trying a few things, we find that u(t)% ehere "s" is a
constant with units of (tini& or "frequency"), UL =0, and LL = 0 are "convenient" since:

(@) ug =0 at UL =0, since ugo) = X" =0, (2.5-8)
(b) ug = g(0) at LL = 0, since u(0) =% 1, and (2.5-9)
(c) u' =-s €, so that (2.5-10)

f gu'dt = -3 { gudt
LL LL (2.5-]-1)

So, we define our "reinvented" Laplace transform, Eqn-42.5

L [gw)1= I e® et dt
: (2.5-4)

with it's property of "eliminating” y'(t) from solutions:

Liyol= f Y0 et di=s I YO et dt -y0)=s L 1y01-00
0 LL (2.512)

that is,
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Lyol=s  Lyol-yo (2.513)
The new domain that the Laplace transform converts systems into is calledeHl'Laplace
domain," the "s domain," or the "frequency domain," since the dimension of s is (1/time)
or (frequency). The original domain is the "time domain."
Thereal power of the Laplace transform is that it can be applied successively in order to reduce
secondorder and higher derivatives of a function down to transforms of the function. For
example, for a second derivative,

L iy o1= s2 Liyol-sy0)-y0) (2.5-14)
This is derived in Egns. {B0) through (313) on page 45 of Seborg, et al.
We usually use deviation variables and sidar systems "initially at rest,” that is, systems that
are at their normal steagyate operating conditions at t = 0. In this case, y(0) = 0, y'(0) = 0,

y"(0) = 0, and so forth for higher derivatives. The transforms of derivatives then simplify to:

L [y ' ] =s L [y ] for deviation variableand system initially at rest (25_15)
L [y ! ] = 5?2 L[y] for deviation variableand system initially at rest (25_16)

and so forth for higher derivatives. An "s" in a transform is a "marker" for a first derivative, an
"s®" is a marker for a second derivative, etc., for deviation variables and systems initially at rest.

Now we can apply the Laplatensform approach to the solution to our Eqn.-,4
Ly +ay=f= s Liyl- y0+a Lyi= Lim (2.517)
We usually consider systems "initially at rest," so, for the initial condition y(0) = 0,

Ly1= ( ! )L[f]

s+a (2.518)
This can also be written in equivalent notation as
- 1 S

e b (2519)
The terms L[y] = L[y(t)] = L[y(1)](s) = Y(s) =Y are equivalent.
We get our solution y(t) by taking the inverse transform

= L' yey= L7 ! S
y [Y ()] [(m )F() ] (2.5-20)

Derive for yourself that the transform of the homogeneous form of this differential equation with
yn(0) =1is
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Vo0 (=2

S +a

(2.521)
Thus, the transform sation, Eqgn. (2.519), of the original equation (2H) can be written
Y(9= Y, 6 -F6) (2.522)
and
y(t) = yh(t) « f(t) (2.523)

Egn. (2.523) is the same as Eqn. (A% We have reached the same solution using Laplace
transforms that we did using the integratingda@pproach.

Note that the product of the transforms of two functions is equal to the transform of the
convolution of the two functions:

v,o -Fe= "Ty,.]- "= My <] (2.523)

In general, for two arbitrary functions g(t) and h(t):

a9 -H9=re  ew= I[n]- o]= [hso]= Mo n] (2.524)
Be careful,
L[h]!'L[g] " L[h!g] (2.5-25)

2.6. Responses to Unit Impulses and Transfer Functions

The Dirac delta funtion is defined here by

!(t— t)=0 fort< t (2.6-1)
!(t— t)=0 fort> t
| | (2.6-2)
] ! (t - tJ )[lldimensbn of time] dt = 1[dimensionless]
. (2.6-3)

A "unit impulse" at t =;tin the arbitrary input variable or forcing function h(t) is defined as:

h(t) = 1 dimensions of h(t) ¥ dimension of t] ! (t- tj ) L/dimension of ] (2 6—4)
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’ h(b)dt :f 1[dimen. of h() ¥ dimen. d { (t- t)dt =1[dmen. ofh(}¥ dimen. d §
(2.6-5)

where "unit" refers to the integral being equal to one. The "magnitude"” of an impulse refers to
the value of the integral of the impulse over time.

The response of an output variable to a unit impulse in an input variable is a key feature of
the dynamic behavior of linear systems.

The Laplace transform of a unit impulse at f i t(t) is:
]

o=  "po1= "O¢- ()= esy, forh@)= O¢- 1) (2.66)

Note that -t is the Laplace transform of a pure time delay of timél'he Laplace transform of
a unitimpulse att5 & 0 is:

Ho=  Lmol=  LiOwi=1. forh= O (2.6-7)

The Laplacesolution for a unit impulse at t = 0 in f(t) for the physical system described by Eqn.
(2.41)is:

dy(t) 6
+ay() =f(t)= (t)
o (2.68)
sYs)+aY(s)=1 forthedeviation variable y(f) and system initially at rest
(2.69)
Y ()= [ ]: trans Hrm d respase ofy () to a unit im pu se in
s +a
tle entire forcing fund ion f(1) (2 6_10)
y(t)= e? = responseof y(f) toa unitimpulse in
theentie fordng funcion f(f) (2 6‘11)

From Eqgn. (2.43), we know that Eqn. (2-61) is also the homogeneous solution of the system
equation with y(0) = 1 and that Egn. (2.80) is the Laplace transform of this homogeneous
solution. We emphasize "unit impulse in the entire forcing function f(t)" in EQns1(3.6nd
(2.6-11) because the homogeneous solution of a system equation equals the respomsi:
impulse in the entire forcing function not, in general, to unit impulses in separate input variables
which may be a part of the complete forcing function. This point is discussed below and does
not affect the general conclusion we reach here.

Reurning to our original equation for this case, Eqn.-®.4and taking the Laplace transform of
the entire equation,

s Y(s) +a Y(s) = F(s) (2.6-12)
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Thus we find that for an arbitrary input f(t):

- 1 S)= S S,
Y(9 = [Ha ]F(‘) G () F(9 (2.613)

YO=  e® fih= g® « £ (2.6-14)

By comparing Eqgn. (2-81) to Egn. (2.6L4), we see @i the function g(t) is the response of y(t)

to a unit impulse in f(t). From Eqgn. (218!), we can conclude that the output y(t) of the system,
which is initially at rest, is given by the response of y(t) to a unit impulse in f(t) convoluted with
the arbirary input f(t).

Whereas it is possible to consider a unit impulse of the entire forcing function of a system
equation, we almost always consider the unit impulse of each of the input variables separately.
For example, for our simple firstrder system,

f(t)= b \ X(t) + b ) z(f), where b . and b , areconstants (2 6‘15)
dy(®
+ay() =f(t) = b x®+ b,z
a ' : (2.6-16)

A unit impulse input in x(t) is

x()= 8(1), ’ x(Hdt = I 6(0 d& = 1[dimensions of x(t)*dimension of t],and z(f) = 0
0 0

(2.6-17)
In this case, for a unit impulse input in x(t):
S Y()+a Y(s) = b, (2.618)
b
Y(9) = [ 1 ] =transform of response ofy(t) to
s+a
aunit impuke inx(9 (26_19)
y)= b, e =response of y(t) to a uni impulse inx(t) (26—20)
Similarly,
b
Y(s) = [ 2 ]: tansfom ofresponse of y(t) to
s+a
a uni impubke in z(t) (26_21)
yt)= b, e® =response of y(t) to a uni impulse in z(t) (26—22)

Returning to our original equation for this case, Eqn-1&)5
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dy(t
Y0 +ay() = b,x®+ b,z()

dt (2.6-23)
The Laplace transform of this equation is:

sY@s)+aYe)= b, XE)+ b, Zs) (2.6-:24)

Thus we find that for arbitrary inputs in x(t) and z(t):

b b
e R 2o

y(t) = bl e , X+ b2 ed . z(t)= gl(t) x X(1)+ gz(t) % Z(t) (26—26)

By comparing Egns. (2-B0) and (2.622) to Eqn. (2.86), we see that the function(g is the
response of yj to a unit impulse in x(t), and@) is the response of y(t) to a unit impulse in z(t).
By comparing Eqgns. (2-69) and (2.621) to Eqn. (2.&5), and by comparing Eqn. (226) to
Egn. (2.626), we see that the Laplace transform of the "unit imputspanse” of y(t) to x(t),
ai(t), is G(s), and the Laplace transform of the unit impulse response of y(t) to A(), ig
Ga(s). G(s) is called theFRANSFER FUNCTION relating y(t) and x(t). Similarly, &s) is
the transfer function relating y(t) aag).

Our GENERAL CONCLUSIONS for linear systems initially at rest using deviation variables
are:

The response of an output variable to a given input variable is equal to the response of
the output variable to a unit impulse in the input variable convolutel with the input.

The transfer function relating a pair of input and output variables is equal to the
Laplace transform of the response of the output variable to a unit impulse in the
input.

The Laplace transform of the response of an output variable is el to the transfer
function relating that pair of input and output variables multiplied times the
Laplace transform of the input.

These statements are true for all linear systems with constant coefficients, even those with
system equations and forcing tions much more complex than Eqn. (26, including higher
order equations and forcing functions with derivatives of input variables.

We can apply these concepts to subunits (blocks in a block diagram showing information flow)
of complex linear systems) addition to applying it to the entire system.

2.7. Response to a Series of Impulses

In general, our problem is that we wish to find the response of an output variable for any
arbitrary variation in an input variable. We have already found the gesehation to this
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problem in Section 2.6. Another approach to reaching this solution, which is somewhat more
intuitive or "visual," starts by breaking a given input forcing function into a series of many Dirac
deltas or impulses. The magnitudes of thpulees would vary such that the summation of the
magnitudes of the impulses equals the integral of the input forcing function over time.

Consider a stirred tank with a liquid stream of constant flow rate q(liter/s) going in and out such
that the fluid volune in the tank, V(liter), remains constant. You may find it useful to imagine

a clear glass tank and pipes with clear water flowing through them. A inert dye (inert tracer) is
be present in varying concentration(raol/liter), in the inlet stream.

dc
V. —/—=q ¢, -qc

: 2.7-1)
or

!Z%H: c, where the "time constant” Lo \é— (2.7-2)
or

o (1)e- f3]e (2.7-3)

For this "mixing tank" system, we also could define a deviation concentration variable and/or
make the concentration and time variables dimensionless. Compare E).t(REqns. (2.98)

and (2.41). They are equivent when y(t) = c(t), a =ib= (14), and z(t) = 0. Also note the
similarities between Eqns. (23}, (2.68), and (2.41) to the dimensionless Eqn.-{} for the
simple heated tank.

An impulse input to the mixing tank can be approximated in "real life" by a short rectangular
pulse or "dig" of concentrated dye in the inlet stream. To approximate an impulse, the duration
of the slug,! t[s], must be short with respect to the characteristic time constant of the system,
which in this case is equal #s]. To approximate a unit impulse irtpthe slug would have a
concentration i 1[mol¥s/liter)V t[s]. At the flow rate q[liter/s] fot t[s], the slug would contain

g moles of dye, producing c(0) = #lMmol/liter]. A unit impulse input could also be
approximated by rapidly dumping a beakentaining g moles of dye into the tank.

Now take the system "initially at rest" where, before t = 0, the concentrations of dye in the inlet
liquid stream and in the tank are zero. At t = 0, a short slug of dye in the inlet stream,
approximating an imgse input of magnitude (value of integral over time in [sibler]) =
co[mols/liter],enters the tank. The system equation is

|dC(t) n
: o= c,0= c, (-0

dt ° (2.7-4)

where

c(t<0) =0 (27—5)
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and where the coefficient bas the dimensions [msliiter]. After t = O there is no furtherpaot
of dye into the tank since (¢ > 0) = 0. A unitimpulse inputinatt=0{ c()dt=]| $(t)dt =1

[mols/liter]} produces an initial concentration c(0) =#fvmol/liter], as we calculated above for
a dug approximating a unit impulse. Therefore, Eqgn.-®.describing the system is equivalent
to

fort! 0,/ ‘;_f +c=0 I.C. ¢(0)=(c,//) [molliter] (2.7-6)
The response c(t) for a this impulse of magnitude c(t), is:

c=( CO/!) et ! = Co/!) e-t-or ! 2.7-7)

For the same system, initially at rest, when a separate impulse input of magnitugede att
>0

c=0 fort<{ (2.7-8)

¢ = ¢, M-y (2.7-9)

c=( ey et W ort_t (ghould be for T t) (2.7-10)
or

c=( cy/h) et wlst- 1) fat_0  (ghould be fort 0) (2.7-11)

where S(t t;) is the "unit step function” and is defined as = 0 for t < any specified fiaralt
1 for t" t;. For an impulse input of magnitudeat t = O followed in the same experiment by an
impulse input of magnitude; @t time {,

¢i= C !(t-O J* e !(t' t) (2.7-12)

c=( ¢/ e seoge( oty e wrlsee 1)) (2.7-13)

Note that the output is just the summation, or "superposition" of the two separate impulse
responses. This is a feature common to all linear systems.

The figures on the next two pages showrésponse of this system to a unit impulse, a series of
five consecutive impulse inputs, and the response to a series of five consecutive impulse inputs.

In general, we wish to find the "response" or output c(t) forabytrary input G(t). We can

think of breaking a given;() into a series of many Dirac deltas or impulses. The magnitudes of

the impulses would vary so that the shape of the series of impulses vs. time had the same shape
as the specified;(t) and so that the summation of the magnituolethe impulses equals the
integral of ¢(t) over time.
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Now define c(t)[mollliter] = 1[molsl/liter]g(t)[1/s] as being the response of c(t) to the unit
impulse gt)[mol/liter] = 1[mols/liter]$(t)[1/s], or the "unit impulse response" of c(t) t@)c
The function g(t) by itself is also referred to as the unit impulse response of ¢(t), tsirece the
value of the coefficient with the dimensions of the impulse magnitude is always onerir a
impulse. For this system,

1 |
g0IYs] = e(t-
(’?) (2.7-14)
ot~ t)st- )= e whse t) (2.7-15)
Eqgn. (2.713) becomes
c= CO g(t )+ Cl g(t- tl)S(t- tl) (27—16)

Remember that we want to find c(t) for the arbitrary inp(}. cConsider an input that starts at t
= 0 and ends after t[s] s[]. We can approximate(g[mol/liter] by a series of N impulses, at
times z[s] = ki/N, each of magnitude (value of integral over time in [sfilder]) =
{ci(z)[mol/liter]! z[s]}:

=1 c(z)8#2) 2 (2.717)

k=1

where! z[s] = /N, the time interval between impulses, and k = 1, 2, ..., N. The coefficients
Ci(z«) in Egn. (2.717) have the values of(f) at the times t =z
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Unit Impulse Response of a First-Order System
= (U Hexp(t )!
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Impulse Inputs Dirac Deltas)

time) /
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t/!
Outp ut Responses
1.5
i Response to 5 consecutive
i / impulse inputs (solidline) =
J convolution of unitimpulse
J responsewith the 5impulseinputs =
0 supe Iposition (sum) of respon ses
E to the separate impulse inputs
2¥ ‘ Responses to separate
. . impulse inputs (dashed lines)
5 —
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-1 2 3 4 5 6 7 8 10
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The response to this series of irngas that approximates our arbitrart)as

G =1 6(z)0(t#32)S(t#32)" 2 (2.718)

k=1

In the limit that the time intervdlz approaches zero:

c(d ! { ci(z)g(t— z)S(t— z)dz = ’ cifz)g(t— z)dz
: . (2.7-19)

fort > . This is the response of the concentration in the mixing tank to the series of impulses
that appoximates the arbitrary inlet concentratigft)c The response to a continuous arbitrary
ci(t) is

c()= I ci(z)g(t— z)dz = I g(z)ci(t— z)dz
: : (2.7-20)

or
c0= <) (=9 () e,y (2.7:21)
where- is the convolution operator. Thus,
C(s) = G(s) G(s) = G(s) &s) (2.7-22)
We can see that we have reached the sanmi®olusing this approach that we did using the
integrating factor approach [compare Eqn. {217 to Eqn. (2.9)] and the Laplace transform
approach [compare Egn. (221) to Eqgn. (2.614) and Eqn. (2-22) to Eqgn. (2.6L3)]. Eqgns.
(2.7-21) and (2.722) apply to an inpubutput pair in all linear systems, not just the simple one

we have used here as an example.

A review of what we have discussed is presented on the following pages.
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Review:

We consder linear processe s (proce sse sthat can be desciibed by inear
differential equations wit c onstant coefficie nts) or nonlinear proc ess es that

have been lire arize dabout the normal steady-sta e opeating condtons.

There may be several inputs {ndependent variables) and several ouputs
(depe ndent variables). Here, we conside a change inone nput variable and
the re sponse ofone aitput varabke . Processes may be simple ormay be

complke xnetworksof simple processes:

INPUT LINEAR PROCESS OUTPUT

—| > |—

Also “forcing function.” Simple process
May be the outputof an This output may become the inputto a
"upstream" process or "downstream" process or process subunit.

process subuni.

INPUT LINEAR PROCESS OUTPUT

— | 2O —

Complex process composed of
network ofsimple processes

There are three elementsto the problem : input, pocess, output In general we will know
twoekments andhave tofindthe third. Spe cific objectives will be to:

(1) predictthe ouput given aninputanda process,

(2) design a control system for a process hat will give the desire d output inresponse toa
given input (e.g., maintan current ouput, within aspecfied band,in responseto aunit

step nput),

(3) detem ne whatthe inie nal stucture ofthe pocess is, given pairsof inputs and

oufputs.
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INPUT LINEAR PROCESS OUTPUT
I — —
—_ /\
unit impulse response of output variable to aunit impulse in
x(t) ="' this input variable, or "unt impulse response" for

Integ d of unit impulse over time= 1 withthe thi pairof inputand ouput variabes
dimensions o x(t) times the dimensionof time. _
E.g., [mol¥¢s/liter] for Ymolliter] and t[s], and convolution perator
dimensionless if both x(t) and t are dimensioness. () =ag@® * x(t) =g(t)
Time duration of "realworid" rectangular pulse or \
gauwssianmust be << characteristic time (time

constant) of process to gprox. a .

Hete use "unitimpuse response”

height of line to represent magnitude o integral.

LIXD]I=Xs)=1
INPUT

‘

xy=2 '@
X(s) =2

INPUT

| ‘
T

X="'®+2 't ty)
X(s)=1+2 e-ts

Y(s) =L[g(®) *x)] = G(s) X(s) = G(s)

LINEAR PROCESS OUTPUT

/\
Output o a linear process is the response of the output

variable to a unitimpulse in the input variable convoluted
with the input. Here outpu = 2 x"unit impulseresponse”

y() =g * x(t) =29(t)
Y(s) =G(s) X(5) =2G(9)

LINEAR PROCESS OUTPUT

—~ N\

Output of a linear process is the response of the output
variable to a unitimpulse in the input varieble convoluted
with the input. Here, the ouput equals the superposiion
(sum) o the separatereponses tothe two impuse inputs.

-
MO =90 X)) =9 +2 S(t-t )gltyt) 1

Y(S) = G(s) X(s) = G(s) +2 e s G(sg)

Lapace of time celay
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INPUT LINEAR PROCESS OUTPUT

Any inputx(t) of duration t capbe
approximatedas series of N
impulses, of the dfferent magnitudes
X(z )¥ z,atthetimesz angd the
inerval _z=t /N,

N N
) Xz Ft-z) "z yh=od «x() ' _ Xz St- zot- zi) "z
k=1 k=1
N N
X@s) ' Xz est'z YE)=GEXE ' Xz eskGs) "z
k=1 k=1
The impulse series approximation is shown here ]
. S ) G(s) is the Laplace transform o the
to gve anintuitive feelfor linear processresponse o )
. ; . response of y(t) to a unitimpulse in x(t) .
andconvolution. In many casesyou willbe given )
. . G(9) is called he TRANSFER FUNCTION
an x(t) for which yau can find an exact X(s) and lating thi it of NOUE & SutAUt varabl
Y(s). (If theinputisreallya impuse series, then relding ths pair ot nput & output vanaples.

the sums shown here are the exact convoluions

andtransforms for the series.)

INPUT LINEAR PROCESS OUTPUT

Complex process,
here composed of network of
subunits (processes)

X(1) Y1) = o *x(1)
X(s) = L [X(1)] Y(s) = G(8) X(9)

The overall ransfer function (or the overall unit impuse reponse)
can be determined from the transfer functions (o tie unit impulse
responses) o the subuwnits. Fo he process shown here:

a(9) = G1G,G3
1+ G1G2G3Gy
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2.8. Experimental Determination of Unit Impulse Responses ahTransfer Functions

If we have the system equations, we can determine the unit impulse responses and transfer
functions directly from the equations. Experimental determinations of unit impulse responses
and transfer functions are desirable to check yiséem equations and are necessary when you
don't know enough about the process to model it. In the latter case, determination of the unit
impulse responses and transfer functions for the process will help you develop a model of the
process.

In Section 2.Ave discussed how to approximate a unit impulse with a short rectangular pulse.
Note that aunit impulse doesn't have to be made in order to determine a unit impulse response:
the response of an output variable in a linear system to an impulse of anyuehags directly
proportional to the response to a unit impulse. However, it is desirable to verify that the does
behave linearly by performing experiments with impulses of different magnitudes and check to
see that the responses are proportional th eter.

Also note that any unit impulse response and its corresponding transfer function can be
determined experimentally usirany arbitrary inputfor which the Laplace transform can be
determined, since: (a) the transfer function is equal to the eramsif the input function divided

by the transform of the output response, and (b) the unit impulse response is the inverse
transform of the transfer function. A common experimental input is an approximate positive or
negative step. The response to atp@sunit step input is the integral over time of the response

to a unit impulse. Thus, the derivative with respect to time of the response to a positive unit step
input equals the unit impulse response.

For a fluid flow system, the unit impulse respoo§an inert tracer, g(t)[1/dimension of time], is

the same as the "residence time distribution function" of the flow system, E(t)[1/dimension of
time]. See H.S. Folger, "Elements of Chemical Reaction Engineering," 2nd ed., Section 13.2,
pp. 712719, fora definition of the residence time distribution function.
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