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The purpose 

Show how the number of moles of molecular species can vary...
       while keeping the mass of each element constant...
           in simple reactors such as...
                batch, plug flow, and continuous-flow stirred tank reactors,
                    and show how to write the minimum number of species balances for reactor design.

Introduction 

A set of Independent Stoichiometric Equations (ISE) can be determined solely from a list of the species
present.  ISE are used in writing necessary and sufficient sets of (a) equilibrium relations and (b) 
species balances in reactor design.  The ISE are purely mathematical expressions, in chemical notation, 
that represent conservation of elements in simple  reactors.  They do not show how the species react 
with each other.  Experimental measurements are required in order to identify the "reactions" (also, 
"reaction pathways"), the physical processes in which the species interconvert, and to write the rate 
expressions which appear in the species balances.  It is important to distinguish between the ISE and 
the stoichiometric equations that represent reaction pathways.

"Single reaction systems" have only one ISE.  The stoichiometric equation that represents the single 
reaction pathway also serves as the one ISE.  The single reaction pathway is reversible and a rate 
equation for each of the forward and backward reactions can be written.  "Multiple reaction systems" 
have two or more ISE and two or more reaction pathways.  The set of stoichiometric equations that 
represents the reaction pathways often does not equal a set of ISE, and the numbers of equations in the 
two sets often differ.  The mathematical development below applies to both single and multiple reaction
systems.

THE LIST OF SPECIES USED AS AN EXAMPLE:  N2 , O2 , H2O, NH3 , NO, NO2

For the six species in this example, there are three ISE, so this is a multiple reaction system.  The 
determination of a set of ISE for these species is explained below.

For "simple" reactors, the necessary and sufficient number of species balances that need to be written is
equal to the number of ISE.  Simple reactors are defined here as those in which the relative amounts of 
species change only by chemical reaction.  The "ideal" batch, plug flow, and continuous-flow stirred 
tank reactors are simple reactors. "Complex" reactors are defined as those in which the relative 
amounts of reactive species change by an additional mode. One example of a complex reactor is a 
semi-batch reactor. Another example is a membrane reactor in which H2 is removed through permeable 
walls by diffusion.  For complex reactors, a greater number of species balances is required.

Brief explanation of the theory 

This explanation uses the given list of 6 species used as an example. With the exception of the reactor 
species balance section and the examples shown, this development follows that of W. R. Smith and 

R. K. Herz, rherz@ucsd.edu, Part 12-A, p. 1 of 9



R.W. Missen, "Chemical Reaction Equilibrium Analysis:  Theory and Algorithms," John Wiley & Sons,
New York, 1982.

The column vector n = [ n1 n2 n3 n4 n5 n6 ]' represents the number of moles of each species present, 
where n1 is the number of moles of N2 , n2 is moles of O2 , n3 is moles of H2O, n4 is moles of NH3 , n5 is 
moles of NO, and n6 is moles of NO2 .  Note the Matlab transpose operator ( ' ). We call n the 
"composition vector." For example, 

n = [
1
1
1
1
1
1
]   

In general, the same chemical species present in two different phases or two different isomers in a 
system is counted as two different species.  For flow reactors, the numbers of moles can be replaced by 
molar flow rates (mol/time).

The column vector b = [ b1 b2 b3 ]' represents the number of moles of each element present.  For 
example, 

b = [565]   

Here, b1 is the number of moles of N, b2 is the number of moles of O, and b3 is the number of moles of 
H.  For a given closed system, the numbers of moles of the elements remains constant.  A "simple 
reactor" such as a batch, plug flow, or continuous-flow stirred tank reactor can be considered a closed 
system for this purpose.  For flow reactors, the units are moles/time (molar flow rate) rather than moles.

The formula matrix A is a 3 row (corresponding to the three elements) by 6 column (corresponding to 
the 6 species) matrix for this example list of species.  Each element of matrix A is the subscript of the 
corresponding chemical element in the corresponding species.

A = [2 0 0 1 1 1
0 2 1 0 1 2
0 0 2 3 0 0]   

For these example species, the rows of formula matrix A correspond to the elements N, O, H in that 
order, top to bottom.  The columns of A correspond to the list of species in this order from left to right: 
N2 , O2 , H2O, NH3 , NO, NO2 . The order of species in the columns of A is arbitrary but must correspond
to the order in the rows of vector n, and the order of elements in the rows in A must agree with the 
order in the rows of vector b. The species chosen to be on the right side of A will become the "unique" 
species in the first set of ISE, as discussed below.
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For a given initial composition vector n0, there will be a fixed number of elements given by the values 
of the vector b:

  A n0 = b

[2 0 0 1 1 1
0 2 1 0 1 2
0 0 2 3 0 0]  [

1
1
1
1
1
1
]  =   [565]   

If the species react and the composition vector changes from the initial n0
 , all other values of the vector

n must also contain the same number of elements, so:

   A n = b 

[2 0 0 1 1 1
0 2 1 0 1 2
0 0 2 3 0 0] [

0.95
1.025
0.85
1.10
0.90
1.10

] =   [565]   

The change in composition, (n - n0), can be called the change vector Δn.  

Δn =   [
−0.05
0.025
−0.15

0.10
−0.10

0.10
]  

The change in the moles of elements associated with Δn must be zero:

  A n - A n0 = A (n - n0) = A Δn = (b - b) = 0   (where 0 is a null vector)

[2 0 0 1 1 1
0 2 1 0 1 2
0 0 2 3 0 0]   [

−0.05
0.025
−0.15

0.10
−0.10

0.10
] = [000]   
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There can be a semi-infinite number of changes in composition, Δn, but all valid ones must maintain 
conservation of elements and obey the equation A Δn = 0.  The general solution for this equation is:

  A (Υ ξ) =  0

where Y is called the "complete stoichiometric matrix" and ξ is a column vector whose elements [ξ1 ξ2 
ξ3]' we call "stoichiometric extents".   They are scalar parameters that describe the change in 
composition of the system.  The columns of Y represent a set of Independent Stoichiometric Equations 
(ISE) for the system.  For this example list of species, Y has 6 rows corresponding to the 6 species and 
3 columns corresponding to the number of degrees of stoichiometric freedom in the system and, thus, 
the number of ISE (NOT to the 3 elements). 

Y may be obtained with Matlab by using the standard Matlab function "null" with the 'r' option set:

Y = null(A,'r')

In mathematical terms, Y is a "rational basis for the null space" of A.  A rational basis is provided when
the 'r' option is set, vs. the default orthonormal basis. 

Y = [
−0.5 −0.5 −0.5
0.75 −0.5 −1.0
−1.5 0.0 0.0

1 0 0
0 1 0
0 0 1

]    

A method for obtaining Y with Mathematica is given by Missen, Mims and Saville, "Introduction to 
Chemical Reaction Engineering and Kinetics," Wiley, 1999. A method for obtaining Y "by hand" is 
given in Smith and Missen, 1982 (briefly, row reduction of A, negative of right submatrix becomes top 
of Y, bottom of Y is identity submatrix).

For example, a possible set of stoichiometric extents is

ξ = [ 0.1
−0.1

0.1 ]   

The columns of Y represent one set of ISE for the system.  In a column, the element in a row represents
the stoichiometric coefficient corresponding to the species that row represents.  Species that increase in 
amount with an increase in the stoichiometric extent corresponding to that column (stoichiometric 
equation) have positive stoichiometric coefficients.  Species that decrease in amount with an increase in
the stoichiometric extent corresponding to that column (stoichiometric equation) have negative 
stoichiometric coefficients.
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Υ ξ =  Δn 

[
−0.5 −0.5 −0.5
0.75 −0.5 −1.0
−1.5 0.0 0.0

1 0 0
0 1 0
0 0 1

]   [ 0.1
−0.1

0.1 ]  =    [
−0.05
0.025
−0.15

0.10
−0.10

0.10
]   

A (Υ ξ) =  A Δn  = 0  

[2 0 0 1 1 1
0 2 1 0 1 2
0 0 2 3 0 0]   [

−0.05
0.025
−0.15

0.10
−0.10

0.10
] = [000]    

A set of ISE is called "Independent" because none of its columns, each of which is an ISE, can be 
eliminated by elementary linear column operations (e.g., multiplying any column by a constant and 
adding the result to another column).  The set is not unique because other valid sets can be obtained by 
performing elementary linear column operations on the members of the set.

Often, the number of ISE, i.e., number of degrees of stoichiometric freedom, equals the number of 
species, S, minus the number of elements, E.  This is the case for our example list of 6 species with 3 
elements and 6 - 3 = 3 ISE.  The exception is when some elements always occur in fixed ratios with 
other elements.  A simple example is the system of butene isomers:  n-1-butene, cis-2-butene, and 
trans-2-butene.  There are 3 species and 2 elements:  C and H.  Since C and H are always in the ratio 
C4H8 , there are 2 ISE, since, mathematically, C4H8 acts as one "element".  The general mathematical 
result is that the number of ISE, M, equals the number of species minus the rank of the formula matrix 
A, that is M = (S - rank(A)) >= (S - E).

This Y can be used "as is," or elementary linear column operations can be performed to get another Y.

Since,

  Y ξ = Δn = n - n0

the final composition in the lab for a given initial composition n0 and set of stoichiometric extents [ξ1 ξ2

ξ3]' can be determined from

R. K. Herz, rherz@ucsd.edu, Part 12-A, p. 5 of 9



  n = n0 + Y ξ

N2

O2

H2 O
NH 3

NO
NO2

[
0.95

1.025
0.85
1.10
0.90
1.10

]  = [
1
1
1
1
1
1
]  +   [

−0.5 −0.5 −0.5
0.75 −0.5 −1.0
−1.5 0.0 0.0

1 0 0
0 1 0
0 0 1

]   [ 0.1
−0.1

0.1 ]   

When expanded, this gives an equation for the number of moles of each species as a function of the 
initial moles of that species present, the stoichiometric coefficients for that species in Y, and the 
stoichiometric extents.  Such an expanded set of equations can be called a "stoichiometric table" which 
is useful when writing species balances.  For flow reactors, the numbers of moles can be replaced by 
molar flow rates (mol/time).

The order of rows in Y corresponds to the species in the same order as in the columns of A in this 
example.  Each column of Y defines an ISE:

ISE 1:  0 = - 0.5 N2 + 0.75 O2 - 1.5 H2O + NH3  % corresponds to column 1 of Y
ISE 2:  0 = - 0.5 N2 - 0.5 O2 + NO                       % corresponds to column 2 of Y
ISE 3:  0 = - 0.5 N2 - O2 + NO2                            % corresponds to column 3 of Y

Rearranging to standard form:

ISE 1:  0.5 N2 + 1.5 H2O = NH3 + 0.75  O2

ISE 2:  0.5 N2 + 0.5 O2 = NO
ISE 3:  0.5 N2 + O2 = NO2 

In this set of ISE, NH3 only appears in ISE 1 (is unique to ISE 1), NO is unique to ISE 2, and NO2 is 
unique to ISE 3. Such a set of "unique" species will be obtained when Y is first derived because of the 
identity submatrix at the bottom of Y. The unique species will be the M species that were placed on the 
right side of the formula matrix A when it was written.

The stoichiometric table for this set of ISE is written by expanding n = n0 + Y ξ

nN2   =  n0
N2    - 0.5 ξ1   - 0.5 ξ2   - 0.5 ξ3

nO2   =  n0
O2   + 0.75 ξ1 - 0.5 ξ2   - ξ3

nH2O  =  n0
H2O - 1.5  ξ1

nNH3  =  n0
NH3      +  ξ1

nNO   =  n0
NO                 +  ξ2

nNO2  =  n0
NO2                             + ξ3

ninert  =  n0
inert

_____________________________________________
ntotal =  n0

total  - 0.25 ξ1               - 0.5 ξ3  

Note that any inert species must be considered when determining the total moles present.
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Writing component balances for reactor design 

Since there are three degrees of stoichiometric freedom in this system, we need three independent 
species balances:  three independent equations in the three unknowns ξ1 , ξ2 , ξ3 .  The shortest 
mathematical route to these equations starts by writing a species balance for each of the "unique" 
species.  For a batch reactor:

dnNH3/dt = dξ1/dt = rNH3V
dnNO/dt  = dξ2/dt = rNOV
dnNO2/dt = dξ3/dt = rNO2V

where V is the volume of the batch reactor.

Next, express the rates in terms of concentrations (mol volume–1) using experimentally determined 
kinetic information about the reaction pathways.  The rate of generation for any species s, rs, equals the 
sum of the net rates of generation of that species in all reaction pathways.  The dimensions of the rates 
rs in the equations shown are (mol time–1 volume–1).  The reaction pathways are not the same as the ISE,
although, in some systems, stoichiometric equations that represent reaction pathways may also serve, in
a different function, as ISE.

Now use the stoichiometric table to express the mole terms in the rate expressions in terms of initial 
composition and the three stoichiometric extents.  The equations may be made dimensionless.  Finally, 
the three ordinary differential equations can be integrated.  For a nonisothermal batch reactor, they 
must be integrated along with a coupled energy balance equation.  At any time t, the values of the 
stoichiometric extents can be substituted into the stoichiometric table to determine the amount of each 
species at that time. 

For the 6 species in this example, there are 3 ISE.  For "simple" reactors, the necessary and sufficient 
number of species balances that need to be written is equal to the number of ISE.  Simple reactors are 
defined as those in which the relative amounts of reactive species change only by chemical reaction.

A set of ISE can always be written such that each equation has at least one species that only appears in 
that equation, i.e., that is "unique" to that equation.  Obtaining the matrix Y for a system results in a set 
of ISE with what we term "unique" species. Such a set of "unique" species will be obtained when Y is 
first derived because of the identity submatrix at the bottom of Y. The unique species will be the M 
species that were placed on the right side of the formula matrix A when it was written. Different sets of
unique species can be obtained by changing the order of the columns in A when it is first written. After 
a stoichiometric matrix Y is derived, different sets of ISE for the same list of species can be obtained 
by linear operations: multiplying one ISE by a constant and adding to another. 

Write the species balances for those "unique" species, with the number required equal to M, the number
of ISE.  Use experimental information about the reaction pathways to write expressions for the rates 
that appear in the species balances.  Then use the stoichiometric table to express the concentrations of 
each species in terms of the initial composition and the stoichiometric extents.  The stoichiometric 
extents are the unknowns to be found.  Note that stoichiometric extents may have negative values.  A 

R. K. Herz, rherz@ucsd.edu, Part 12-A, p. 7 of 9



solution for the values of the extents can be substituted back into the stoichiometric table to get the 
amounts of all species present.

Alternatives to writing M species balances for simple reactors are:

(a) write a balance for each species (see p. 298 in H.S. Fogler, "Elements of Chemical Reaction 
Engineering," 3rd ed., Prentice-Hall, 1999), 

(b) write P species balances, where P is the number of reaction pathways and where an "extent" 
variable has been defined for each of the pathways and a stoichiometric table has been written using 
those variables (see p. 152 in L.D. Schmidt, "The Engineering of Chemical Reactions, Oxford, 1998, 
where P here = Schmidt's R).  

Summary of steps 

1. Write the list of chemical components (species) present in the reactor 
2. Write the formula matrix A
3. Get the complete stoichiometric matrix Y, e.g., with Matlab:  Y = null(A,'r') 
4. Write the initial composition vector n0 
5. Write the stoichiometric table
6. For a "simple" reactor, write a balance equation for each of the "unique" species in Y 
7. For batch reactors, plug flow reactors, and unsteady-state continuous stirred tank reactors, step 

6 produces coupled ordinary differential equations (ODEs)
8. For steady-state continuous stirred tank reactors, step 6 produces coupled algebraic equations
9. Solve the balance equations
10. For ODE integration, at each step, use the current values of the extents and the stoichiometric 

table to compute reactant and product concentrations for use in the rate equations

Different ISE by linear combination  

Different sets of ISE for the same list of species can be obtained by linear operations: multiplying one 
ISE by a constant and adding to another.  This is the set we obtained above:

ISE 1:  0 = - 0.5 N2 + 0.75 O2 - 1.5 H2O + NH3  
ISE 2:  0 = - 0.5 N2 - 0.5 O2 + NO                       
ISE 3:  0 = - 0.5 N2 - O2 + NO2                            

This is another valid set of ISE, which is obtained by linear operations on the first set:

ISE 1:  0 = N2 - 1.5 O2 + 3 H2O - 2 NH3 
ISE 2:  0 = - O2 - 2NO + 2 NO2                      
ISE 3:  0 = 1.25 N2 + 1.5 H2O - NH3 - 1.5 NO 

This second set does not have a unique species for each equation, since 5 of the 6 species appear in two
equations each. Writing the minimum number of component balance equations for a reactor would be 
more complicated using the second set that it would be using the first set.  
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The examples on the following two figures are screenshots from the ReactorLab software in Division 5,
Lab 1. In the Lab, the initial compositions and the stoichiometric extents can be varied by the user, with
the lab automatically computing the final compositions. The first figure uses the first set of ISE and the 
second figure uses the second set.
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