
Basics of animation - ReactorLab.net

Here we introduce how to use matrix operations to move an object in a scene. In other notes, we show how objects
can be moved across a scene using chroma key compositing, also known as green screen and blue screen methods.

Computer aided design (CAD) of machine parts and computer animated movies start with objects defined by polygon
meshes, usually of rectangles or triangles. On the left of this figure is an example of a human face constructed from a
mesh of connected polygons. On the right, the mesh has been partially "rendered" to add surfaces, light and color.

Matsushima, K., Nishi, H., Nakahara, S., 2012. Simple wave-field rendering for photorealistic reconstruction in polygon-based
high-definition computer holography. J. Electron. Imaging 21, 023002–1. doi:10.1117/1.JEI.21.2.023002

On the following pages is a Matlab program that shows the basics of moving a single polygon in 2D by matrix
operations. 3D adds another dimension, and the number of polygons required in a movie scene is tremendous.
However, the same basic operations for one polygon are repeated over all the polygons defining an image.

Animators use special programs designed to make and move complex figures, such as that shown below. Then they
use supercomputers to generate and render the hundred-plus thousand scene images (frames) needed for a movie.

Maya software by Autodesk http://www.autodesk.com/products/maya/overview

2D graphics with matrix transforms

% ReactorLab.net 2016

% also see http://mathforum.org/mathimages/index.php/Transformation_Matrix

define original 2D object

% enter coordinates of vertices of one object
% easiest to type by entering x,y pairs as rows in array
g = [0.5 0.5
 1.5 0.5
 1.5 1.5
 0.5 1.5
 0.5 0.5];

% then transpose so x's in row 1, y's in row 2
g = g';

% then add row to make augmented matrix
[rows, cols] = size(g);
g = [g; ones(1,cols)];

% make backup copy to start fresh for each example below
gOrig = g;

% plot original object
plot(g(1,:),g(2,:),'k')
title('object (black) rotated (blue, red), translated (green) and zoomed (dashed)')
am = 4;
axis([-am am -am am])

translate 2D object

g = gOrig; % get backup copy

tx = 1.0; % units of translation in x direction
ty = 2.0; % units of translation in y direction

% generate translation matrix
t = eye(3,3);
t(1,3) = tx;
t(2,3) = ty;

% translate
g = t * g;

hold on
plot(g(1,:),g(2,:),'g')
axis([-am am -am am])

rotate 2D object about figure origin

g = gOrig; % get backup copy

% specify CCW rotation, use degrees here, so use sind, cosd
th = 60;

% specify rotation matrix
r = [cosd(th) -sind(th) 0
 sind(th) cosd(th) 0
 0 0 1];

% rotate object with matrix multiplication
g = r * g;

% each new x = cosd(th) * x - sind(th) * y
% each new y = sind(th) * x + cosd(th) * y

% plot rotated object and o at center of rotation
hold on
plot(g(1,:),g(2,:),'b',0,0,'bo')
axis([-am am -am am])

rotate 2D object around specified point

g = gOrig; % get backup copy

% specify center of rotation in figure coordinate system
cr = [-1; -1];

% specify CCW rotation, use degrees here, so use sind, cosd
th = -60;

% move object to new coordinate system
% where center of rotation is at figure origin
t = eye(3,3);
t(1,3) = -cr(1,1);
t(2,3) = -cr(2,1);
g = t * g;

% rotate object
r = [cosd(th) -sind(th) 0
 sind(th) cosd(th) 0
 0 0 1];
g = r * g;

% translate so center of rotation back to original location
t = eye(3,3);
t(1,3) = cr(1,1);
t(2,3) = cr(2,1);
g = t * g;

% plot rotated object and o at center of rotation
hold on
plot(g(1,:),g(2,:),'r',cr(1,1),cr(2,1),'ro')
axis([-am am -am am])

zoom 2D scene on origin

g = gOrig; % get backup copy

s = 1.5; % zoom factor, <1 zoom out, >1 zoom in
g = s * g; % s is a scalar so * and .* do same thing

hold on
plot(g(1,:),g(2,:),'k--')
axis([-am am -am am])

scale object

g = gOrig; % get backup copy

sx = 1.5; % scale factor for x direction
sy = 2; % scale factor for y direction

% scale
s = eye(3,3);
s(1,1) = sx;
s(2,2) = sy;
g = s * g;

figure(2)
plot(gOrig(1,:),gOrig(2,:),'k')
title('object (black) scaled (green) sheared (blue) ')
am = 4;
axis([-am am -am am])
hold on
plot(g(1,:),g(2,:),'g')

shear object

g = gOrig; % get backup copy

shx = 1; % shear factor for x direction
shy = 0; % shear factor for y direction

% shear
sh = eye(3,3);
sh(1,2) = shx;
sh(2,1) = shy;
g = sh * g;

hold on
plot(g(1,:),g(2,:),'b')
axis([-am am -am am])

