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Komiyama, et al. (1999) discussed methods to identify the important steps in a CVD reaction system. 
In one method, they considered CVD on the internal wall of a cylindrical tube. They proposed that the 
limiting process in a CVD reaction system could be determined by the pattern of plots of the log of the 
experimental growth rate vs. tube length for tubes of different length.

In their Equations 1 and 2, Komiyama, et al. presented a 1D model of the system. The convection of 
the reactant is represented by the mean velocity. For the diffusion limited case, the wall reaction is fast 
relative to the other processes. The rate of diffusion of reactant B to the wall can be represented by a 
mass transfer coefficient that is appropriate for laminar flow. 

Below we develop equations for the 1D approximation of the diffusion limited case. A dimensionless 
mass transfer coefficient, the Sherwood number, is defined. The plot below was produced by this 1D 
approximation. The equations and Matlab programs are listed at the end of this document. 

The pattern shown in this plot agrees with the diffusion limited plot in Komiyama et al. This plot is also
similar to the pattern produced by the 2D model that we developed in separate set of notes.
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Introduction of the Sherwood number to laminar flow reactor 
Richard K. Herz, rherz@ucsd.edu  
 
Start with the 2D equations shown previously for species A and B using dimensionless 
variables with the primes dropped. 
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Now, neglect axial diffusion for large ReSc and specify that there is no reaction of A at 
the wall. The product ReSc can be expressed as the ratio of convective mass transport 
rate to diffusive mass transport rate, and as the characteristic time for diffusion across the 
tube diameter divided by the mean residence time of fluid in the tube. See my notes on 
flow patterns in chemical reactors. 
 
Also, instead of describing radial diffusion and reaction at the wall exactly, we will 
approximate these combined processes using a mass transfer coefficient. This will 
convert the equations into ordinary differential equations. 
 
Since convection and reaction at the wall are both linear in the concentration, we can use 
the mean velocity, u , and mean concentrations, c , to develop balances around a disk-
shaped control volume instead of our original ring-shaped control volume. Using the 
original dimensioned variables: 
 

0 g A
A A

dc
k c u

dx
= − −   

 

( )20 g wallB
A A m B B

dc
k c u k c c

dx R
⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

 

 
These equations are approximations for gas reaction in laminar flow (they describe plug 
flow) and over-predict conversions by about 10%. See my course notes on chemical 
reaction engineering, flow patterns in chemical reactors, for ReSc >> 1 in laminar flow. 
 
The last term on the right in the lower equation is the net rate at which B diffuses into the 
disk-shaped control volume from the wall. This rate is approximated as being 
proportional to the difference between the wall and bulk-mean concentrations of B, 
where the proportionality coefficient, mk , is called the mass transfer coefficient. The 
mass transfer coefficient mk  has units (m/s). The term (2/R) is the wall area per unit 
volume of reactor, where R is the radius of the reactor.  
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Since B is being consumed at the wall, and wall

B Bc c< , this term is negative, so it is 
conventional to reverse the concentration terms: 
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Now we convert back to dimensionless variables to get: 
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and where the Sherwood number is: 
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Now we have a system of two ODEs. Dropping the primes: 
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Our only problem now is that we don't know wall

Bc . Since both mass transfer and this 
reaction are first-order processes, we can do something about this. 
 
The flux of B from the bulk gas to the wall equals the rate at which B reacts at the wall: 
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A little algebra gives us: 
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Mass-transfer limited case: For the limiting case where the rate of reaction at the wall is 
fast, w

B mk k>> , *
mk k≈  and w

B Bc c>> . * 2 /mSh Sh Rk D= = . In Komiyama et al. this case 
is loosely called "diffusion limited." The film growth rate equals ( ) 3m/s (mol/m )m Bk c . 

Since Sh  and, therfore, *Sh  does not vary with R, mk  is proportional to (1/R). 
 
Surface-reaction limited case: For the limiting case where the rate of reaction at the wall 
is relatively slow, w

B mk k<< , * w
Bk k≈  and w

B Bc c≈ . * 2 /wBSh Rk D= .  Note that, whereas 
w

B Bc c≈ , w
B Bc c>  such that ( ) 0w

m B Bk c c− > . Note that w
Bk  is independent of R such that 

*Sh  for this case is proportional to R. Also note that the value of *Sh  for this case is 
much less than the value of *Sh for the mass-transfer limited case, since w

B mk k<< . The 
film growth rate equals ( ) 3m/s (mol/m )w

B Bk c . The surface reaction rate constant w
Bk  does 

not vary with R. 
 
Now our dimensionless equations are: 
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The initial conditions are, at x = 0, dimensionless 1Ac = , dimensionless 0Bc = .  
 
The equations are in the form of those for a standard series reaction system. The equation 
for A can be integrated easily by separating variables, and then the solution for Ac  as a 
function of x can be substituted in the equation for B. This equation can be integrated 
using the integrating factor approach. 
 
Gas-phase reaction limited case: *g

ADa Sh<< . 
 
Sh for the mass-transfer limited case:  
 
The values of the Sherwood number can be determined from analytical solution of the 
equations for laminar flow and radial diffusion, or solution of the equivalent heat transfer 
problem to obtain the Nusselt number for heat transfer (the Sherwood number is 
sometimes called the Nusselt number for mass transfer). 
 
For fully developed laminar flow entering a tube in which mass transfer to the wall 
occurs with constant concentration at the wall, e.g., fast reaction such that the wall 
concentration is approximately zero, the Sherwood number varies with dimensionless 
axial position x' in the following way, as obtained from the solution of the governing 
partial differential equations: 
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dimensionless x':   0,   0.002,   0.02,    0.2,    0.4,     ∞  
                      Sh:  ∞ ,   12.8,     6.0,   3.71,  3.66,  3.66 
 

where dimensionless x' = (2x/R)/(ReSc), 2 mRkSh
D

≡  

 
Since Sh  does not vary with tube radius R, mk  is proportional to (1/R). 
 
[e.g., Kays and Crawford, "Convective heat and mass transfer," 2nd ed., McGraw-Hill 
(1980), p. 111, for analogous heat transfer case] 
 



1D SYSTEM - Matlab listing
When you copy to Matlab do not include page footers & may need to add return between end end
% model CVD reactions in tube % A(g)->B(g)
% B (g) -> film at wall (s) %
% this program requires the following m-files:
%   cvd_1D_derivs.m
%   cvd_1D_sherwood.m
%
% THIS PROGRAM CURRENTLY IS FOR MASS-TRANSFER LIMITED CASE
% since function Sherwood, which is used by
% function cvd_1D_derivs, supplies only Sh for
% mass-transfer limited case
warning('off') % otherwise get warnings from taking log for plot
% share global variable values with main and functions
global Da Rratio GTL
% INPUT VALUE - GTL IS 1 for Gas Transport Limited Case
% other for Surface Reaction Limited Case
GTL = 1;
% Rratio = ratio of tube radius R to a reference radius
for Rratio = [0.5 1 2]
  % Damkoehler number for A->B rxn in gas
  % Da for gas rxn prop to R^2
  Da = 200*Rratio^2;
  % initial conditions of dependent integration variables of ODEs
  % dimensionless inlet concentrations
  cA0 = 1;
  cB0 = 0;
  c0 = [cA0 cB0];
  % specify span in independent integration variable of ODEs
  % dimensioned tube length relative to a reference tube length
  xd0 = 0;
  xdL = 2;
  xdspan = [xd0 xdL];
  % for constant-length tube, dimensionless x prop. to 1/R^2
  xspan = xdspan/Rratio^2; % span in dimensionless tube length
  % integrate using standard matlab function ode45
  [x c] = ode45('cvd_1D_derivs',xspan,c0);
  cA = c(:,1);
cB = c(:,2);
  [row col] = size(cA);
  cAf = cA(row);
  XA = (cA0 - cAf)/cA0;
  cBf = cB(row);
  % convert from dimensionless x to
  % dimensioned xd relative to reference tube length
  xd = x*Rratio^2;
  if GTL == 1
    % calculate film deposition rate (mol/m2/s) = km(m/s)*cB(mol/m3)
    % km = Sh*D/(2*R), so km and film deposition rate prop to cB/R
    frate = cB/Rratio;
else
    % for surface reaction limited, rate = kw(m/s)*cB(mol/m3)
    % kwall is independent of R
    frate = cB;
end
  % probably a better way in matlab than this to have different color
  % curves for each case on plot but this comes to mind
  if Rratio == 0.5
    RateMin = frate;
    xdMin = xd;
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    cAMin = cA;
    cBMin = cB;
  elseif Rratio == 2.0
    RateMax = frate;
    xdMax = xd;
    cAMax = cA;
cBMax = cB;
else
    RateMid = frate;
    xdMid = xd;
    cAMid = cA;
    cBMid = cB;
  end
end
% plot rate and distance down tube as dimensioned values
% relative to reference dimensioned values of rate and tube length
plot(xdMin,log10(RateMin),'g',xdMid,log10(RateMid),'r',xdMax,log10(RateMax),'b')
title('green = 0.5 * Rref, red = Rref, blue = 2 * Rref, Rref = reference tube 
radius')
ylabel('log10(film deposition rate) (arbitrary dimensional units)')
xlabel('distance down tube (arbitrary dimensional units)')
axis([0 xdL -5 0.5])
 
% TAKE A LOOK AT GAS PHASE CONC
figure(2), plot(xdMin,cAMin,'g',xdMid,cAMid,'r',xdMax,cAMax,'b')
title('cA: green = Rref/2, red = Rref, blue = 2Rref, Rref = reference tube radius')
ylabel('dimensionless cA')
xlabel('distance down tube (arbitrary dimensional units)')
figure(3), plot(xdMin,cBMin,'g',xdMid,cBMid,'r',xdMax,cBMax,'b')
title('cB: green = Rref/2, red = Rref, blue = 2Rref, Rref = reference tube radius')
ylabel('dimensionless cB')
xlabel('distance down tube (arbitrary dimensional units)')
    

LISTING OF FUNCTION FILE  cvd_1D_derivs.m

function dcdx = cvd_1D_derivs(x,c)
%
% function cvd_1D_derivs uses function cvd_1D_sherwood
% share global variable values with main and functions
global Da Rratio GTL
cA = c(1);
cB = c(2);
if GTL == 1
  % for gas-transport limited case, kwall >> km
  % so Sh* = 2*R*km/D
  % and km is proportional to (1/R), so Sh* indep of R
  % here take into account variation of Sherwood number
  % in entrance length - not much change from using constant 3.66
  Sh = cvd_1D_sherwood(x);
else
  % for surface-reaction limited, kwall << km
  % so Sh* = 2*R*kwall/D
  % and Sh* is proportional to R
  ShRef = 0.3; % arbitrary value but must be << 3.66
  Sh = ShRef*Rratio;
end
dcAdx = -Da*cA;
dcBdx = Da*cA - Sh*cB;
dcdx = [dcAdx; dcBdx]; % return as column vector
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LISTING OF FUNCTION FILE  cvd_1D_sherwood.m 
 
function Sh = cvd_1D_sherwood(x)
% this function supplies the Sherwood number
% for mass-transfer to cylindrical tube wall
% for fully developed laminar flow and
% constant wall concentration, e.g.,
% a wall concentration near zero for fast wall reaction
% variation of Sh in entrance region
% has small effect vs. using limiting value of 3.66 everywhere
% for the values of inputs in main program cvd_1D
% account for variation of Sh in entrance region
% where concentration profiles are developing
% fit curve to Sh vs. dimensionless x in entrance region
% coefficients of 3rd order polynomial
% fit of log(x) vs. log(Sh) see below
coef = [0.0053 0.0995 0.2862 1.5122];
if (x<0.001)
    % Sh = infinity at x = 0 but don't bother
    Sh = 12.8;
elseif x < 0.2
    % use fit in entrance region
    lnSh = polyval(coef,log(x));
    Sh = exp(lnSh);
else
    % past entrance region, use limiting Sh
Sh = 3.66;
end
 
% % fit Sh in entrance region
%
% Sh = [12.8 6.0 3.71 3.66 3.66];
% x = [0.001 0.01 0.1 0.2 0.3];
%
% lnSh = log(Sh); % matlab log = ln
% lnx = log(x);
% coef = polyfit(lnx,lnSh,3); % 3rd order polynomial
%
% % check curve at more points than were fit
% % to see if have deviations between fit points
%
% lnxp = log(0.001):0.1:log(0.3);
% lnShp = polyval(coef,lnxp);
%
% plot(lnx,lnSh,'b',lnxp,lnShp,'k')
% title('blue = data, blk = fit')
% 
% BE CAREFUL with 2 factors
%
% If change dimensionless x' = (2x/R)/(ReSc) to 
% get rid of 2's in ODEs, then have to re-fit the function in Sherwood.m!!!! 
% Sherwood.m dimensionless x' = (x/R)/(ReSc)
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