
R. K. Herz, rherz@ucsd.edu, page 1 of 6 
 

Thermal oxidation of Silicon - development of the Deal-Grove model for dry thermal oxidation 
Richard K. Herz, rherz@ucsd.edu  
 
SiO2 layers are grown over Si wafers in order to form electrically insulating regions during integrated 
circuit manufacturing. Wikipedia has good overviews of SiO2 deposition methods. The method 
available are: 
 

• Thermal oxidation - oxidation of the silicon wafer itself (800-1200 °C) 
o Dry thermal oxidation using O2: 

     Si (s) + O2 (g) → SiO2 (s) 
o Wet thermal oxidation using H2O:  Si (s) + 2 H2O (g) → SiO2 (s) + 2 H2 (g) 

• CVD - chemical vapor deposition by reaction to add SiO2 over the wafer 
o using silane: SiH4 (g) +  2 O2 (g) → SiO2 (s) + 2 H2O (g) (300-500 °C) 
o using dichlorosilane: SiCl2H2 (g) + 2 N2O → SiO2 (s) + 2 N2 (g) + 2 HCl (g) (900 °C) 
o using tetraethoxysilane (TEOS): Si(OC2H5) 4→ SiO2 (s) + byproducts  (650-750 °C) 

 
The dry thermal oxidation process is considered here. Typical conditions are 1 atm of dry O2 at 1200 
K.  The final goal here is to get a kinetic model that explains experimental measurements of the 
thickness of the SiO2 layer vs. reaction time. 
 
Most reactions encountered in materials science and engineering involve reactions at a solid surface or 
interface and involve mass transfer steps coupled with chemical reaction.  In thermal oxidation of Si, 
O2 reacts with Si at the Si-SiO2 interface, and the rate of this reaction is directly affected by the rate at 
which O2 can diffuse through the SiO2 layer. As the thickness of the layer increases, the rate of 
reaction decreases.  
 
Experiments and theory have shown that the diffusing oxygen species is O2  and that diffusion occurs 
via "percolation" through the disordered SiO2 layer. This layer is less dense that fused silica (quartz). 
See A. Bongiorno and A. Pasquarello, DOI: 10.1103 / PhysRevLett.88.125901 (2002). 
 
In class, we came up with several ways in which the thickness of the SiO2 layer might be determined 
at a given time of reaction during experiments, including: 

 
* measure change in O2 partial pressure in gas flowing in and out of the reaction chamber 

(proportional to the growth rate), or measure the partial pressure of O2 vs. time in a batch 
reaction 

* bounce light off the wafer:  ellipsometry, interferometry 
* weigh the wafer:  gravimetric measurement 
* cut the wafer and use microscopy to measure the SiO2 thickness 
* measure resistance across SiO2 layer 

 
After brainstorming, the next step would evaluate the advantages and disadvantages of the methods to 
select which one(s) to use.  Note most of these methods do not directly give us readings of reaction 
rate, so we must use additional information about the system and may have to differentiate data in 
order to determine reaction rates. 
 
Experiments would give us data for the thickness of the SiO2 layer, Z, vs. time, t.  Now we want to 
come up with a model of the system that fits the data. Also see Chapter 8 in Middleman and 
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Hochberg, "Process Engineering Analysis in Semiconductor Device Fabrication," McGraw-Hill 
(1993). 
 
Balance on O2 in SiO2 layer over the control volume (AΔz) from 
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where N = number of moles of O2 in control volume, A = area of Si wafer, D = diffusion coefficient of 
O2 in SiO2 layer, C = molar concentration of O2 in SiO2 layer, lower-case z = distance from gas-SiO2 
interface into SiO2 layer toward wafer.  No reaction is occurs within the SiO2 layer (only at the Si-SiO2 
interface), so the reaction term is zero. 
 
Divide by AΔz and taking the limit as Δz approaches zero: 
 

€ 

dC
dt

= D

dC
dz z+Δz

−
dC
dz z

Δz

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

 

 

€ 

dC
dt

= D d2C
dz2

 

 
The characteristic time for diffusion through a 1 µm SiO2 layer is small: 
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τ diffusion =
Z 2

D
=

0.1 µm( )2

1 x 103  (µm)2 /h
=1 x 10−5  h 

 
where z = Z is the position at the Si-SiO2 interface, and Z is the thickness of the SiO2 layer. In 
contrast, the characteristic time of the overall process to produce a 0.1 µm SiO2 layer is much larger, 
roughly 10 h. 
 
Because the characteristic time of O2 diffusion in the SiO2 layer is much less than the overall time 
scale of the process, we can specify quasi-steady-state conditions for the diffusion process: 
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Cd   with boundary conditions  ( ) SCC =0   and ( ) ZCZC =   

 
CS is the concentration of O2 dissolved in the SiO2 layer at the gas-SiO2 interface. We assume that the 
O2 in the SiO2 and in the gas at the interface are in equilibrium with each other, and that mass transfer 
resistance in the gas phase is negligible. 
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Integrating, we get the linear concentration profile that we expect for quasi-steady-state diffusion 
through a layer in which no reaction is occurring: 
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The rate of reaction at the Si-SiO2 interface is specified to be first-order in O2 
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rO2 = −kCZ  
 
where 

€ 

rO2 is the rate of generation of O2 per unit area of wafer. Since O2 is a reactant, 

€ 

rO2 has a 
negative value. If model predictions do not fit the data, then we would have to propose and test a 
different rate expression. 
 
At the Si-SiO2 interface, we also know that the flux of O2 diffusing from the SiO2 layer equals the rate 
per unit area at which O2 is being consumed by reaction. 
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Substitute the expression obtained above for ( )zC  into the derivative term on the left hand side: 
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Solving for CZ we get: 
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Now we know how ZC  varies with Z  in this model. The rate of change of the SiO2 layer thickness 
can be related to the rate of reaction at the Si-SiO2 interface: 
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where v  is the molar volume (m3/mol) of SiO2.  Using the result for ZC  obtained above: 
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This model does not apply to the time before 0t  when a thin layer of oxide forms rapidly by a process 
that has to be described by a different rate expression.  
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Integrating, we get an equation which is called the "Deal-Grove model" of thermal Si oxidation: 
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When diffusion is fast relative to reaction (relatively large D, or small Z), the parabolic term becomes 
negligible, and this limit is called “reaction rate limited.” This happens at early reaction times for 
constant k and D. When diffusion is slow relative to reaction (relatively large k, or large Z),  the linear 
term becomes negligible and this limit is called “diffusion limited.” This happens at longer reaction 
times for constant k and D. This equation can be rearranged to solve for Z = f(t), which is a quadratic 
solution. 
 
This model can now be tested by determing the values of the two parameters, LINk  and PARk , which 
provide the best fit of the model to experimental data. If we get a reasonable fit, then we conclude that 
the assumptions used in development of the model were reasonable. 
 
There are two options to find values for kLIN and kPAR.  
 
The first option is to use the "integral method" of kinetic analysis. Fitting data to the integrated form 
of a rate equation is called the integral method. This problem is linear in the unknown values (1/kLIN) 
and (1/kPAR), so linear least-squares fitting can be used to minimize the sum of the squared errors (e.g., 
sum of (tcalc - texpl)2 at each Z).  
 
The second option is to use the "differential method" of kinetic analysis. Fitting experimental rate data 
to the differential form of a rate equation is called the "differential method." In this method, 
experimental measurements of Z  vs. t  are differentiated in order to determine the growth rate, 
( )dtdZ / . This process will increase the relative scatter in the data plot and will require more data 
points than the integral method. A plot of the data for inverse of the growth rate vs. Z  is linear if the 
model fits the data. 
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where kLIN and kPAR can be determined from the intercept and slope of the best-fit straight line through 
the points. 
 
Below are excerpts of Deal and Groves’ 1965 paper  
<http://scitation.aip.org/content/aip/journal/jap/36/12/10.1063/1.1713945>  
 
Deal & Grove  here  
t   t - t0 
x0   Z - Z0 
B   kPAR 
B/A   kLIN 
 
Note: see the last page of these notes for an interesting use of this analysis for a completely different 
problem - rate of ice freezing over a lake! 
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Your goal at the university is to learn the fundamentals of how to solve important problems so that 
you can apply these fundamentals to other problems - sometimes completely different problems!  
 
This is important because the pace of change in the world today is increasing and you can't count on 
having the same job, solving the same problems, for very long.   
 
Here is an example of two apparently very different problems that can be solved by the same 
approach. The mathematical approach used to determine the rate of thermal oxidation of a silicon 
wafer can be applied to determining the rate of ice freezing over the surface of a lake! 
 
This ice problem relates historically to cutting lake ice and storing it in ice houses for food 
preservation through the summer. Cutting and storing lake ice was common through the early 1900's 
in this country. I thought of this when I remembered the description of cutting lake ice in Thoreau's 
"Walden Pond" 
 

"They stacked up the cakes thus in the open air in a pile thirty-five feet high on one side and six or 
seven rods square, putting hay between the outside layers to exclude the air; for when the wind, 
though never so cold, finds a passage through, it will wear large cavities, leaving slight supports or 
studs only here and there, and finally topple it down. At first it looked like a vast blue fort or 
Valhalla..."   

 
from "The Pond in Winter" chapter in "Walden Pond" by Henry David Thoreau 
<http://thoreau.eserver.org/walden16.html>   
 
google search for images of ice cutting 
<https://www.google.com/search?q=ice+cutting&hl=en&btnG=Search+Images&tbm=isch&gws_rd=ssl> 
 
Your first impression might be that these are completely different and totally unrelated. However, 
think of the parallels:  
 

 
 
Water freezing at the ice-water interface releases the "heat of fusion" of water. This thermal energy 
must be carried away from the interface by heat conduction through the ice to the colder air. Can you 
write and solve the equations? Yes, of course you can! 


