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Derivation of Rate Equations From Reaction Mechanism  
Richard K. Herz, rherz@ucsd.edu  
 
This proposed mechanism for methanol synthesis was the basis for the UKRON-I Test Problem developed 
by Berty, Lee, and Szeifert of the Chemical Engineering Department of the University of Akron and 
discussed at International Workshops on Kinetic Model Development at the 1983 Denver and 1985 
Chicago AIChE meetings. 
 
 
2 H2 + S = H2 − S[ ]
    CO + H2 − S = H2CO − S
    H2CO − S + H2 − S = CH3OH − S + S
    CH3OH − S = CH3OH + S
   ___________________________
   2H2 +CO = CH3OH     overall pathway

 

 
Abbreviations: 
 
H = H2      C = CO    F = H2CO     M = CH3OH  
 
The Test Problem gave data from a steady-state reactor that functioned as a CSTR: an internal recycle 
reactor or “Berty reactor” for catalyst studies. Since we have a steady-state reactor, the steady-state 
approximation (SSA) applies to all species, since they really are at steady-state. 
 
Since the gas is probably non ideal at the high-pressure conditions inside the reactor, we should use 
fugacities instead of partial pressures in the rate equations for the individual steps.  However, by assuming 
that the fugacity coefficients in this system are constant over the range of conditions specified, we can 
"absorb" the fugacity coefficients into the rate coefficients and use partial pressures in the rate equations. 
 
Prof. Berty and coworkers derived a rate equation (rate as function of gas concentrations) without applying 
the partial equilibrium approximation nor assuming a rate limiting step. There are 4 steps, each with two 
rate coefficients. For varying temperature, there is also an activation energy for each step. 
 
Their result is given on the next page. The rate equation is the quadratic solution equation given at the top 
of the page. The a,b,c values in the quadratic solution are given by the equations below on the page.  A lot 
of algebra! 
 
Berty and coworkers then generated a set of hypothetical “experimental data” from this rate equation for a 
variety of operating conditions including different temperatures.. Participants were given the mechanism 
and data and told to come up with a rate equation that fit the data. They were not given the rate equation on 
the next page. The rate equations generated by the participants were much simpler than the one on the next 
page. The goal was to develop a rate equation that fit the data with the least error.  
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By applying the partial equilibrium approximation to each step except one – the rate determing step (RDS) 
– we can simplify the algebra and derive a rate equation. There are four possibilities for the rate limiting 
step, so we can derive four rate equations to test. Here we will show the derivation for one possibility. 
 
Model 1 – specify that Step 1 is the RDS: 
 
rM = 0.5 k1PHθV − k−1θH( )  
 
The rate of methanol formation is proportional to the net forward rate of step 1, since we have specified 
that it is the rate determining step (RDS) in this model.  Note that the rate of methanol formation at steady-
state is one-half the rate of step 1, since step 1 has to occur twice for every methanol molecule formed. 
 
Apply the partial equilibrium approximation (PEA) to steps 2-4 so that we can express the fractional 
surface coverages,   θi , in terms of partial pressures: 
 
Step 2:  θF = K2PCθH  
 

Step 3:  θF =
θMθV
K3θH

 

 

Step 4:  θM =
PMθV
K4

= KMPMθV      
  
KM =

k−4
k4

=
1

K4
 

 
Set the relationships for steps 2 and 3 equal to each other, 
 

K2PCθH =
θMθV
K3θH

  θH
 2 =

θMθV
K2K3PC

 

 
then insert the relationship for step 4, 
 

θH
 2 =

PM
K2K3K4PC

θV
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Now substitute this last equation into the relationship for step 2: 
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K3K4
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Then substitute these results for Hθ , Fθ  and Mθ  in terms of Vθ  into the “site balance”: 
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1= θV + θH +θF + θM  
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Finally, use these relationships in the rate equation for the RDS: 
 

rM =

0.5k1 PH −
PM
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At the moment, we have five adjustable parameters, k1  and the four K .  We can use our knowledge of 
equilibrium to reduce this to four.  
 
At equilibrium, rM  = 0, and therefore the numerator of the rate equation = 0 at equilibrium. 
 

PH −
PM
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K1
2K2K3K4 =

PM
PCPH

2
  at equilibrium 

 
We also know from equilibrium that 
 

ΔGrxn
0 T( ) = −RT lnKeq      Keq =

PM
PCPH

2 φ0
 2       at equilbrium 

 
where we assume ideal gas behavior (should be checked) and whereφ0=1 atm = 101.325 kPa is the 
standard-state fugacity, selected to match the pressure units used for the partial pressures. Keq is 
dimensionless. Keq

* has dimensions of inverse pressure squared, and has a different numeric value from Keq 
when φ0 is not 1 atm, e.g., when φ0= 101.325 kPa. 
 

  Keq
* =

Keq
φ0

 2
= K1

2K2K3K4 =
PM
PCPH

2
    at equilibrium 
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However, since all the K's are constant at a given temperature, the relationship between the K's holds at all 
extents of reaction, not just at equilibrium.  
 

Keq
* =

Keq
φ0

 2
= K1

2K3K2K4          at all extents of reaction 

 
This means we can replace the product of the unknown K's in the numerator of the rate equation with 
K1

2K2K3K4 = Keq
*. The value of Keq

* can be obtained using the known Gibbs free energy of reaction 
obtained from thermodynamic tables. The effect is to eliminate K1 as an unknown. 
 

rM =

0.5k1 PH −
PM
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Grouping parameters to simplify notation, 
 

rM =

k f PH −
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  Step 1 is RDS 

 
We have four adjustable parameters with which to fit this equation to isothermal data:  k f , K1

' , K2
'  and 

KM .  The value of Keq
* at the reaction temperature can be obtained using the known Gibbs free energy of 

reaction obtained from thermodynamic tables. All of the models derived from the mechanism also have 
four adjustable parameters. Each of these four parameters are temperature dependent, so there is also an 
activation energy parameter for each. 
 
 


