
 1

Questions? Ask Prof. Herz, herz@ucsd.edu 
 
Pore size distribution 
 
The distribution of pore volume as a function of pore radius can be used in estimating effective diffusion 
coefficients in porous media such as adsorbents and heterogeneous catalysts. Pore size distributions can 
be estimated in several ways. Here we introduce the use of condensation of liquid in pores during 
physisorption experiments and the intrusion of liquid mercury into pores in the mercury porosimetry 
method. In both methods, the surface tension of a liquid in contact with the porous solid is used in 
determining the distribution of pore volume vs. pore radius. 
 
Physisorption and capillary condensation method 
 
A multipoint BET apparatus is used for this method. The fit of the BET isotherm equation to data 
usually applies only in the the pressure ratio range P/Po  from 0.05 to 0.3. One reason is that, at higher 
pressure ratios, filling of small pores or void spaces in the material with liquid will start to occur as the 
thicknesses of the adsorbed multilayers approach the radii of the pores. This phenomenon can be used to 
determine the distribution of pore sizes in a material. 
 
Consider a sample over which the amount of gas adsorbed has been measured as the pressure ratio has 
been increased to a value near 1. Then consider that the pressure is reduced and the equilibrium amount 
adsorbed is measured at each pressure. We might get data like this: 
 

 
 
The arrows show the direction in which the pressure changes were made with increasing time during the 
experiment. We see a hysteresis loop.  
 
Using the thermodynamics of curved vapor-liquid interfaces, we can analyze the descending (top) 
branch of the loop in order to determine the pore size distribution of the material. 
 
First, we model the porous material as having cylindrical pores. Note that the shapes of the pores or void 
spaces in some materials may deviate significantly from this model.  The effect of a change in pressure 
and volume on the free energy of a pure, single-component material is given by: 
 

( )G PVΔ = Δ  
 



 2

where GΔ  is the molar Gibbs free energy, and V  is the molar volume. For a liquid (l ) and an ideal 
vapor (v ) in equilibrium, the chemical potentials and Gibbs free energies of the two phases are equal. If 
a change is made, e.g., changing the vapor-liquid interface from plane to curved, then the changes in the 
chemical potentials and Gibbs free energies on the two phases must be equal: 
 

v lG GΔ = Δ  
 
From determining the work required to create a curved, semi-spherical surface of radius r, we get a form 
of the equation of Young and Laplace: 
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where ΔP is the pressure difference across the surface, γ is the surface free energy or surface tension, 
and r is the radius of curvature of the surface. The change in molar volume of a liquid with pressure is 
negligible, thus, 
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The change for the vapor phase is the change from vapor in equilibrium with a plane surface of the 
liquid to vapor in equilibrium with a curved surface of the liquid. The vapor phase can be considered an 
ideal gas: 
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Combining the equations for the changes in Gibbs free energies, we get the Kelvin equation: 
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For example, for a water drop in equilibrium with a mixture of water vapor and air, the curved surface is 
convex such that the value of  r is positive and the vapor pressure of the liquid water, Pv, is larger than 
the standard vapor pressure of the water, Pv0, over a plane surface of liquid water. This means, for the 
water drop and the water vapor to be in equilibrium, the partial pressure of the water vapor is equal to Pv 
which is greater than Pv0.  
 
Because of the molar volume of the vapor phase is much larger than the molar volume of the liquid 
phase, the change in vapor pressure due to a curved vapor-liquid interface or meniscus is much smaller 
than the change in total pressure across the interface for equal changes in Gibbs free energy. For 

v lG GΔ = Δ , ( ) ( )v v l lP V P VΔ = Δ . Since the ( )mean v lV V , v lP PΔ Δ . For water at 298 K and 1 

atm, ( / ) 1360v lV V = . For nitrogen at 77 K and 1 atm, ( / ) 167v lV V = . 
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A qualitative explanation: The total pressure inside of an inflated rubber balloon is higher than 
atmospheric pressure and the forces are balanced by the "tension" of the rubber balloon skin. The 
surface tension holding a water drop together is analogous to the skin of a rubber balloon, except the 
"skin" of the water drop is a layer of water molecules which are at a higher energy state than interior 
molecules because they are bonded to fewer water molecules and, since they are at a higher energy state, 
work must be done to increase the area of the surface of the drop. The increased total pressure of the 
water inside a water drop results in an increased chemical potential and, thus, an increased tendency to 
evaporate, i.e., an increased "vapor pressure" or pressure of vapor that would be in equilibrium with the 
liquid. Consider a small water drop surrounded by a mixture of air and water vapor that is in equilibrium 
with a large pool of liquid water with a plane surface. The vapor pressure of the water in the drop (i.e., 
the pressure of water vapor that would be in equilibrium with the water inside the drop) is higher than 
the partial pressure of water outside the drop (the standard vapor pressure of water). Thus, the liquid 
water in the drop will have a tendency to evaporate. The vapor pressure of the water in the drop is larger 
than the standard vapor pressure of water but is not nearly as much larger as the total pressure of the 
liquid in the drop is larger than 1 atm. This is because (a) the free energy change of water evaporation 
from the drop is the change in the product of the vapor pressure and the molar vapor volume, (b) which 
is equal to the change in the product of the total pressure and the molar liquid volume, and (c) the molar 
vapor volume is much larger than the molar liquid volume. 
 
For a liquid in a cylindrical tube or pore, the radius r equals the radius of the liquid meniscus, rm. For a 
liquid that "wets" the walls of the tube, the value of rm is negative because the curved surface is concave 
with respect to the liquid.  The vapor pressure over the meniscus of a liquid that wets the tube walls is 
less than the standard vapor pressure, (Pv/Pv0) < 1.  
 
A qualitative explanation: For water wetting the inside of a small glass tube ("capillary tube"), the total 
pressure of the water inside the tube is less than 1 atm because the water molecules are attracted to the 
glass. The mechanical forces across the vapor-liquid interface or meniscus is balanced by the surface 
tension of the curved meniscus. Consider water in a small glass tube which the water wets and which is 
surrounded by a mixture of air and water vapor that is in equilibrium with a large pool of liquid water 
with a plane surface. Water vapor over the tube will tend to condense inside the tube because the vapor 
pressure of water in the tube (i.e., the pressure of water vapor that would be in equilibrium with the 
water inside the tube) is less than that of the surrounding water vapor, again due to the attractive forces 
between the water molecules and the glass. As above, because of the large differences between the 
molar volumes of water liquid and vapor, the reduction of the vapor pressure of water in the tube from 
the standard vapor pressure is much less than the reduction of the total pressure of the water in the tube 
from the surrounding total pressure. 
 
The radius of a cylindrical pore in our model porous material is rp, where the value of rp is positive. The 
effective radius of the meniscus is / cosm pr r θ= − . The angle θ is the contact angle between the liquid-
vapor interface and pore wall. The contact angle θ = 0o for a liquid that completely "wets" the pore wall 
material and θ = 180o for a liquid that does not wet the pore wall. 
 
For water in a 2 μm-diameter tube surrounded by an air-water mixture at a total pressure of 1 atm, the 
vapor pressure of the water, Pv, is only 0.1% less than the standard vapor pressure, Pv0, a small effect. 
However, the capillary rise of the water in the tube due to the total pressure difference across the curved 
liquid interface is 14.7 m, a large effect. For this case, ΔP in the Young and Laplace equation is -144 
kPa = -1.42 atm, and the total pressure in the liquid under the menicus is -0.42 atm.  Such a negative 
pressure implies that the liquid water is in tension rather than compression (see references at end of this 
document) .  The total pressure is 1 atm in the liquid water in the tube at the level of the liquid pool in 
which the lower end of the capillary tube is immersed.  
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The pore radii in most catalysts and adsorbents are in the range 1 nm - 100 nm (100 nm = 0.1 μm). 
 
For liquid nitrogen in most materials,  θ = 0o such that cosθ  = 1. However, the radius of the meniscus is 
smaller than the pore radius, comparing absolute values, by the thickness of the multilayer adsorption 
layer that is present at the pressure ratio, t. So ( )m pr r t= − − . This correction for t will only be 
significant for very small pores.  The Kelvin equation for this experiment becomes 
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where the adsorbed layer thickness is a function of (Pv/Pv0) and can be computed from the molecular 
diameter and the BET equation using parameters determined from data at low (Pv/Pv0) where pores are 
not filled. This equation says that the vapor pressure of the liquid inside the pore, Pv, is smaller than the 
standard vapor pressure of over a plane surface of the liquid, Pv0. Thus, in order to get liquid inside the 
pore to evaporate, the pressure of the pure vapor outside the pore must be reduced below the pressure Pv 
predicted by the equation. 
 
At a given pressure ratio (Pv/Pv0), all pores of radius larger than rp will not contain liquid, i.e., they will 
be empty except for the adsorbed layer. During the experiment, the change in the amount adsorbed is 
recorded as a function of the pressure ratio as the pressure ratio is reduced. The larger pores will empty 
first at high (Pv/Pv0) and the smallest pores will empty last at lower (Pv/Pv0). At (Pv/Pv0) = 0.5, rp = 1.4 
nm for nitrogen at 77 K. 
 
Consider the adsorption curve shown above but now we remove the lower part of the hysteresis loop 
from the plot.  
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Start at (Pv/Pv0)1 which corresponds to a pore radius rp1 which is the largest pore radius in the material. 
At this pressure ratio, all pores are filled with liquid nitrogen. The total pore volume per gram solid is 
the volume of liquid nitrogen that corresponds to the nitrogen gas volume at standard conditions,  
v1 = vg

1.  From vg
1 (standard m3/kg), we calculate mol/kg, then use the density of liquid nitrogen to 

calculate liquid volume vl
1 (m3/kg). At this starting pressure ratio, vl

1 equals the total pore volume, 
vp, total. 
 
Next, reduce the pressure ratio to (Pv/Pv0)2 which corresponds to a pore radius rp2, equilibrate and 
determine the change in amount of nitrogen adsorbed, Δvg = vg

1 - vg
2. Then calculate the change in pore 

volume Δvl. This change in pore volume Δvl is the volume of pores with radius rp2 < rp <= rp1. This 
process is continued until all pores have emptied.  
 
 The results can be plotted as a pore volume distribution, usually vs. pore radius  or diameter on a log 
scale, e.g.,  
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Alternative forms of plots are "cummulative pore volume" distribution plots, e.g., plots of 
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Note the different integration limits on the integral symbols. 
 
The Barret-Joyner-Halenda or BJH method is frequently used to calculate the pore volume distribution 
as a function of pore radius from experimental data: 
 

Barrett, E. P., Joyner, L. G. &  Halenda, P. P. "The Determination of Pore Volume and Area 
Distributions in Porous Substances. I. Computations from Nitrogen Isotherms," Journal of the 
Americal Chemical Society, vol. 73, p. 373 (1951).  

 
Also see part II in the same journal in July 1951, p. 3155, for a comparison of pore volume distributions 
measured by nitrogen physisorption to those measured using mercury porosimetry. Automated 
physisorption instruments have this and similar calculation methods already programmed into their 
computers. 
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Mercury porosimetry 
 
This apparatus consists of a steel chamber that contains the sample and a piston. The sample is placed in 
the chamber and the chamber is evacuated. Liquid mercury is introduced. The piston is used to force 
liquid mercury, which doesn't "wet" the material, into the pores of the material. The force applied to the 
piston is recorded as a function of the piston displacement. The piston displacement (m) times the cross-
sectional area of the piston (m2) is the volume of mercury (m3) that is forced into the pores by that piston 
displacement. 
 
By applying the equation of Young and Laplace above to the case where the pressure inside the material 
is near zero, the applied pressure is P, and the contact angle between the liquid and the solid is θ, we get 
the so-called Washburn equation: 
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For mercury in common materials, the contact angle used is θ  = 135-140o. At a pressure P, all pores 
with radius rp and larger will be filled with mercury. Intially, at low applied pressure, only large pores 
will fill with mercury. As the pressure is increased, smaller and smaller pores will fill. Instruments are 
available which can attain 60,000 psi (414 MPa = 4140 bar), at which pores of radius 1.5 nm can be 
filled. 
 
Constants and physical property values 
 

R = 8.3143 (Pa m3)/(mol K) -- ideal gas constant 
g = 9.8 m/s2                           -- gravitational acceleration 

 
Water at 298 K 
 

γ    = 7.20E-2 (N/m) 
ρ l  = 1.0E3 kg/m3 

lV  = 1.80E-5 m3/mol 
vV  = 2.2445E-2 m3/mol  

 
Nitrogen at 77 K 
 

γ    = 9E-3 (N/m) 
ρ l  = 0.808E3 kg/m3 

lV  = 3.47E-5 m3/mol 
vV  = 0.5780E-2 m3/mol  

 
Interestingly, at (Pv/Pv0) = 0.5, rp = 1.4 nm for N2 at 77 K and rp = 1.5 nm for water at 298 K at 
this reduced pressure ( /lV Tγ = 4.06E-9 for N2 at 77 K; /lV Tγ = 4.35E-9 for water at 298 K). 

 
Mercury at 293 K 
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γ   = 0.436 (N/m) 
ρ l  = 1.35E4 kg/m3 

lV  = 1.48E-5 m3/mol 
 
 
References for water under tension - negative pressure: 
 
N. R.Tas, P. Mela, T. Kramer, J.W. Berenschot and A. van den Berg, "Water plugs in nanochannels 
under negative pressure," 7th lnternational Conference on Miniaturized Chemical and Biochemical 
Analysts Systems, <http://www.chem.ualberta.ca/~microtas/Volume1/004-52.pdf> accessed April 27, 
2006. 
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