
This is the process that we will use to write and solve dynamic process models. 

1) Write unsteady-state balance equation. In this class, we will write material and energy balances. 
This step will result in one or more differential equations.

2) Linearize the differential equation if necessary. In this class, we only consider linear differential 
equations. Linearization is accomplished by applying the first-order Taylor approximation (Taylor 
expansion) to nonlinear terms. Linearized equations are approximate for small deviations from an 
initial state.

3) Define deviation variables. We will consider how the process deviates from an initial 
steady-condition that we specify. 

4) Apply the Laplace transform. In most cases, we can lookup the transform terms in a table of Laplace 
transforms, e.g., on p. 10 of Chau's textbook.

5) Solve the resulting algebraic equation for the transform of the output variable in terms of the 
"transfer function" of the process times the transform of the input variable. Specify the input variable 
as a function of time and apply the Laplace transform. 

6) Apply the inverse transform in order to transform the solution from the frequency domain, or 
Laplace transform domain, back into the time domain. We may need to separate the equation into a 
sum of simple terms by doing a "partial-fraction expansion." After partial-fraction expansion, we can 
lookup the terms in a table of Laplace transforms.
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Here is a simple process, a tank containing a constant volume of liquid and with constant inlet and 
outlet flow rates of liquid. 

A chemical component is present in the inlet flow to the tank. The concentration of this component 
can change with time without changing the flow rates of liquid. 

As the inlet concentration changes, the concentration in the tank will change. 

The tank is well-mixed such that the concentration in the outlet pipe is the same as that everywhere 
inside the tank.
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Now write a component balance around the volume of liquid in the tank:

Rearranging,

where we have defined the space time        . The right hand side of the equation is the forcing function 
or input.

Dynamic Process Models 3

rherz@ucsd.edu



This equation is a linear equation, so we don't have to linearize it.

Now define deviation variables. The initial steady-state conditions are denoted by a subscript s.

The deviation variables are denoted by a superscript delta. Chau's book uses an apostrophe, but an 
apostrophe is also used to signify a derivative, so I prefer to use a delta.

Now substitute the deviation variables into the system equation:
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Now we have our system equation in terms of the deviation variables.

The next step is to apply the Laplace Transform. The values of the deviation variables are zero at time 
zero.
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Time domain differential equation:

Frequency domain algebraic equation:

Now solve the transform equation for the transform of the output variable.

The transform of the output variable equals the "transfer function" of the process, Gp(s), times the 
transform of the input variable. For this process,
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Now we are ready to specify our forcing function, the deviation in the inlet concentration as a function 
of time.

As an example, consider a Dirac delta input, also termed a unit impulse input.

                                                                                        where tj is the time at which the input occurs
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In reality, we can't create a perfect impulse input. But we can approximate one by adding our 
component to the inlet over a time period that is short with respect to the space time:

                                                                             OR
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The product of the flow rate Q and the integral of the input equals the number of moles in the input:

With this unit impulse input, the concentration in the tank will jump to this level:
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The Laplace transform of a unit impulse = 1.

Thus, for a unit impulse input into our process,

Note that the transform of the unit impulse response of a process, C(s), equals the transfer function of 
the process, Gp(s). This is a general result and is important to understand and to remember. 
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Now we are ready for the final step, apply the inverse transform:

Our transfer function equation is simple such that we can look up the inverse transform in the table:

Our solution is the response of the system to a unit impulse input. Of course, other inputs will result 
in other outputs.
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The differential equation for this example can also be solved by using the "integrating factor" 
approach: integrate homogeneous equation (forcing function = 0) to obtain homogeneous solution, 
divide each term in full equation by homogeneous solution, integrate.

This approach can also be considered an integral transform. Its limitation is that it only works with 
first-order differential equations.

Laplace invented an integral transformation that can be applied to higher-order differential 
equations, e.g., those with second derivatives with respect to time.

The Laplace transform variable s is a marker of a first derivative with respect to time, and s2 is a 
marker of a second derivative.
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