
Artificial intelligence is the process of using computers to analyze
complex information in order to assist with making decisions.

“Is that really you looking at me?” _

There are many approaches to artificial intelligence.

The approach we introduce here is the use of artificial neural networks.

There are software tools available which allow people to apply neural
networks to solve problems without having to understand what is going on
inside the tools.

Our purpose is to explain the computational aspects behind simple artificial
neural networks.

The goal is an understanding of the basics which underly the software tools.

Neural Networks
in

Artificial Intelligence

MATLAB code used here is available at https://github.com/RichardHerz/neural-networks
1 of 23

www.braininjuryaustralia.org.au
Blausen_0657_MultipolarNeuron

@ScienceRF

Our brains sense and think using connected networks
of cells called neurons

These networks are the inspiration for
“artificial neural networks”

which can be trained to solve complex problems
such as object recognition in images

and speech recognition

github.com/RichardHerz
neural_network_shutterstock_all_is_magic.jpg

2 of 23

-3.91
7.401

0

Input Hidden Layer Output

github.com/RichardHerz

2 inputs, 1 output,
1 hidden layer

with 3 neurons &
9 synapses

Neural Network
Simulates XOR logic - exclusive or

Output is TRUE when one input is TRUE but not both

Every node - neuron - has a connection - synapse - to every neuron in nearest-neighbor layers of neurons
in this basic type of neural network.

The values are held in memory locations and the CPU executes the math - there are no physical, hardware
neurons and synapses.

True

False

A simple example
This logic can be computed in a single IF statement in a
procedural program but is useful here to start learning about
neural networks

Each circle in the diagram represents a node or “neuron.”
Each line represents a connection or “synapse.”
The value in a neuron is its “activation.”
Each synapse has a connection “weight.”

0.02

3 of 23

-10.9

15.5

-11.2

1

0

0.02

1.0

1.0 0.98

Input Hidden Layer Output

2 inputs, 1 output,
1 hidden layer

with 3 neurons &
9 synapses

Neural Network
Simulates XOR logic - exclusive or

Output is TRUE when one input is TRUE but not both

github.com/RichardHerz

True

False
True,
where network outputs
approximate desired values

The MATLAB code to solve for the output remains the same as that below, regardless of the size of the
network:

W is a MATLAB cell array whose elements are the matrices of synapse weights for each layer; a is a cell array
whose elements are the vectors of neuron activation values. Each set of W and a are matrix-multiplied to
obtain the neuron activation values for the next layer in the series of neuron layers.

Matrix multiplication is well suited to being accelerated in hardware Graphical Processing Units, since graphic
transformations also involve matrix multiplication.

4 of 23

1

0

Input Hidden Layer Output

2 inputs, 1 output,
1 hidden layer

with 3 neurons &
9 synapses

Neural Network
Simulates XOR logic - exclusive or

Output is TRUE when one input is TRUE but not both

github.com/RichardHerz

True

False
True

Visualization of neuron values - “activations” - for this input

0.02

1.0

1.0 0.98

Input Hidden Layer Output

True

5 of 23

Visualization of synapse connection “weights” to hidden layer and to output
min = -11.2 (white), max = +15.5 (black)

Input Hidden Layer Output

2 inputs, 1 output,
1 hidden layer

with 3 neurons &
9 synapses

Neural Network
Simulates XOR logic - exclusive or

Output is TRUE when one input is TRUE but not both

github.com/RichardHerz

The synapse connection weights were determined when the network was “trained”
using combinations of known inputs and outputs.

Training is discussed later in these notes.

-3.91

7.40
-10.9

15.5

-11.2

6 of 23

Visualizations of node activations: input > hidden layer > output

False

Output is TRUE when one input is TRUE but not both

github.com/RichardHerz

Input Hidden Layer Output Input Hidden Layer Output

Input Hidden Layer OutputInput Hidden Layer Output

True True

False

7 of 23

Visualization of synapse weights to hidden
layers 1-4 and to output,

min = -1.23 (white), max = +1.25 (black)

4 inputs, 4 outputs
4 hidden layers, each

with 60 neurons =
240 neurons &

11,280 synapses

Neural Network A more complex network which
detects diagonal, horizontal and vertical

inputs to a 2 x 2 “touch screen”

github.com/RichardHerz

Prior to training the network with known input and output cases, the connection weights
were assigned random values in the range -1 to +1. Then the weights were adjusted during
training in order to match input cases with their corresponding outputs. The resulting weights
are not random. Different sets of weights will be obtained with different random initializations

8 of 23

Visualization of node activations: input > 4 hidden layers > output

github.com/RichardHerz9 of 23

https://youtu.be/3JQ3hYko51YDenis Dmitriev

A neural network for a 28 x 28 “touch screen”
that identifies handwritten numerals 0-9

github.com/RichardHerz

This network was trained with a set of known inputs and outputs that is much smaller than all the possible ways in
which numbers can be drawn. The power of a trained network is to be able to give correct outputs for inputs for which
the network wasn’t trained. That’s the whole point of neural networks!

A neural network represents a large number of coupled equations which, when given a set of input values, can produce
a set of desired output values.

The more neurons and synapses - the more equations - and the greater complexity of inputs and outputs which can be
"fit" by the system of equations. Note the significant increase in complexity going from the XOR example to the

2 x 2 “touch screen” example to the 28 x 28 touch screen in the figure above.

10 of 23

.

github.com/RichardHerz

= σ (W{2}
1 σ (W{1}

1,1 a{1}
1 + W{1}

1,2 a{1}
2) + W{2}

2 σ (W{1}
2,1 a{1}

1 + W{1}
2,2 a{1}

2) + W{2}
3 σ (W{1}

3,1 a{1}
1 + W{1}

3,2 a{1}
2))

σ(x) =
ex

1 + ex

where, for more compact notation, the superscript {n} of cell arrays a and W denotes a matrix in cell array element n,
and the subscripts are the indices within that matrix. The hidden layer activations are a{2}. The nonlinear activation
function for this network, which constrains activation values between 0 and 1, is

a{3} = f (a{1}) = σ (W{2}
1 a{2}

1 + W{2}
2 a{2}

2 + W{2}
3 a{2}

3)

In a sense, neural networks are math functions which can “fit” any desired input and output data given enough
adjustable parameters, which are the “synapse” connection weights and, thus, enough neurons.

Using a neural network is somewhat similar to using a polynomial function to fit a series of data points (empirical fit)
vs. using a functional form that represents the underlying physics (theoretical fit).

In a neural network, the functional form is fixed by the network structure. The values of the constants in the function
are the connection weights, whose values are determined during training.

For the XOR network above, this is the Matlab code which computes the output a{3} given the input a{1}

Matrix W{i-1} and vector a{i-1} are elements of the cell arrays W and a. They are matrix multiplied. The
Matlab code is very compact. We can see the form of this network’s function by looking at the
expanded equation, which shows the individual terms. The output a{3} is a function of the inputs a{1}:

For a larger neural network of this type, there are more terms but the functional form remains unchanged.
With the continued development of computers, larger networks can be computed more rapidly.

A neural network might be thought of as a general function which can fit anything given enough terms…

11 of 23

github.com/RichardHerz

The networks shown earlier in these notes had already been "trained" to produce correct
outputs given various inputs. The connection weights are fixed in the initial training stage.
This is the hard part of neural networks!

First, a collection of paired inputs and their correct outputs is obtained to use in training the
network.

Initial weights are set to random values. Then an input is fed to the network and an output
is obtained. This output is compared to the correct output and an error value is computed.
The initial error value will be large.

Next, for each connection weight in the network, the rate of change of the error with
respect to a change in the value of that weight is computed. After the rates of change for
all the weights are obtained, the weights are changed by multiplying a small constant times
each of the rates of change, and then subtracting the result from corresponding weights.
This small adjustment to the weights, when the input is again fed to the network, will result
in a smaller error in the output.

This procedure is called the “gradient descent method.” The rates of change are also called
gradients. You wish to "descend" to smaller errors.

This gradient descent procedure is repeated until the error reaches a minimum value. The
concept is illustrated in the figure on the next slide.

Training Artificial Neural Networks

12 of 23

Gradient Descent Method

github.com/RichardHerz

The blue line represents how the output error E changes with this connection weight W. In Trial 1, the value of W is
randomly specified. Then E and the gradient (dE/dW) is computed. The value of W in Trial 2 is computed from the
value in Trial 1 minus a factor (0.2 here) times the gradient from Trial 1. This results in a smaller error. The process
repeats until E approaches the minimum value.

13 of 23

github.com/RichardHerz

After training of a network that is properly structured for the problem, the network will give
approximately correct results, even for inputs that are not in the training set.

In fact, that is the whole point of neural networks: giving correct outputs for inputs that are
not in the training set!

Note that the simple XOR and 2x2 touch screen networks had all possible inputs used in
training, whereas the 28x28 touch screen was trained with a finite set of the extraordinarily
large possible combinations of pixel activations that are possible.

The 28x28 touch screen network shown in a previous slide was trained with the MNIST
data set http://yann.lecun.com/exdb/mnist/. Other sets of data are available on the web for
other types of problems such as image and speech analysis.

The gradient descent method is applied to all pairs of inputs and outputs in the training set,
either individually or in batches.

Next, we will examine how the gradient values in the gradient descent method are
obtained.

Training Artificial Neural Networks

14 of 23

github.com/RichardHerz

In the simple network structure we are considering, information signals move in one direction: from
the input to the output. A change in one connection weight near the input causes a change in the
signal that propagates through the rest of the network and eventually results in a change in the final
output error.

The way that this change in signal propagates through the network is determined by the connection
weights and nodes through which it passes. Those weights and nodes are known to us.

One way to determine the gradients would be to make a change in each connection weight
separately, then recompute the outputs and obtain the change in error. Then repeat for each
connection weight in the network. This would be a lot of computational work!

A more efficient way to compute the same gradient values is to work backwards from the output to
each preceding connection weight in a procedure called "back propagation." This is possible
because of the straightforward structure of the network.

This method proceeds from the output layer to the last hidden layer, then back to each preceding
pair of hidden layers, computing the gradients of error with change in connection weight at each
step by simple analytical differentiation. This process is more efficient because the entire network
from input to output doesn't have to be computed for each connection weight.

After all the gradients are computed, then all the weights are updated. Then the input is fed to the
modified network and a new output and error is computed.

The gradient descent process is repeated and continues until only small changes in output error are
obtained.

Training Artificial Neural Networks

15 of 23

github.com/RichardHerz

Below, instead of standard math notation, we use MATLAB pseudo-code in order to make
easier comparison of this derivation to the MATLAB code, which is available at

https://github.com/RichardHerz/neural-networks.

A derivative similar to dX_dY below are the partial derivatives of array X with respect to array Y.
We do not use ∂X/∂Y since that shows division in code and we can’t use ∂ in MATLAB code.

Relationships in the XOR network:

 layer input hidden output

 activation a{1} a{2} a{3}
 weight W{1} W{2}

The errors at the output nodes, given a training input a{1}, are

 E = 0.5 * (y - a{3}).^2

where y is the array of correct outputs in the training set, which correspond to the inputs a{1}.

The original paper introducing back propagation: Rumelhart, D., Hinton, G. & Williams, R. Learning representations
by back-propagating errors. Nature 323, 533–536 (1986). https://www.nature.com/articles/323533a0

Back Propagation and Gradient Descent in Network Training

16 of 23

github.com/RichardHerz

The rates of change of errors E with respect to the outputs are

 dE_da{3} = -(y - a{3})

Define the inputs I from layer 2 going to the output layer 3 as

 I{2} = W{2} * a{2}

where

 a{3} = sigmaFunc(I{2})

 da{3}_dI{2} = d sigmaFunc(I{2})_dI{2}

 = a{3} .* (1 - a{3})

The rates of change of error E with respect to I{2}, the signals from layer 2 to layer 3, are

 dE_dI{2} = dE_da{3} * da{3}_dI{2}

 = -(y - a{3}) .* a{3} .* (1 - a{3})

Back Propagation and Gradient Descent in Network Training

17 of 23

github.com/RichardHerz

Working backward toward the inputs, in "back propagation" of the error...

 I{1} = W{1} * a{1}

 a{2} = sigmaFunc(I{1})

 da{2}_dI{1} = d sigmaFunc(I{1})_dI{1}

 = a{2} .* (1 - a{2})

 dE_da{2} = dI{2}_da{2}' * dE_dI{2}

 dI{2}_da{2} = W{2}

 dE_da{2} = W{2}' * dE_dI{2}

where W{2}' is the transpose of W{2} and * is matrix multiplication in Matlab such that the
results are the sums of the contributions of each node in layer 2.

Back Propagation and Gradient Descent in Network Training

18 of 23

github.com/RichardHerz

The rates of change of error E with respect to I{1}, the signals from layer 1 to layer 2, are

 dE_dI{1} = dE_da{2} * da{2}_I{1}

 dE_dI{1} = W{2}' * dE_dI{2} .* a{2} .* (1 - a{2})

For the XOR network with only one hidden layer, we stop here in getting the d's.

For a network with more hidden layers, we would continue the process by which we got d{1},
with corresponding changes in array index.

Back Propagation and Gradient Descent in Network Training

19 of 23

github.com/RichardHerz

Now that we have the rates of change of error E with respect to the inputs to each layer, we can
compute the rates of change of error E with respect to the weights themselves.

 dE_dW{i} = dE_dI{i} * dI{i}_dW{i}’

 dI{i}_dW{i} = a{i}

 dE_dW{i} = dE_dI{i} * a{i}'

where a{i}' is the transpose of a{i} and * is matrix multiplication in Matlab such that the
results are the sums of the contributions to each weight.

Back Propagation and Gradient Descent in Network Training

20 of 23

github.com/RichardHerz

Now we can compute the new values of the connection weights W{i}, which will be used in
the next iteration of the gradient descent method

 W{i} = W{i} - alpha * dE_dW{i}

where alpha is a constant value in the range 0-1.

With these new values of weights, the training inputs are used to compute new outputs. The
new errors are computed, and the process is repeated.

The process is stopped when some specified criterion is met with regard to the approach to the
minimum error or a maximum number of iterations.

At that point, the artificial neural network has been trained. The performance of the network
should then be tested by using additional inputs for which the outputs are known.

On the next slide is a visualization of how the XOR network weights change during training.

Back Propagation and Gradient Descent in Network Training

21 of 23

github.com/RichardHerz

Visualization of the weights during training, starting from and ending at the weights shown above. These are for a particular
random initialization. Other initializations will result in different weight patterns, but similar final error, E, which is shown for only
the [1;0] input, although the training used all four possible inputs. Some elements of the initial pattern persist during training.

XOR network weight changes during training

initial, E = 0.1672 10%, E = 0.1167 20%, E = 0.0988

30%, E = 0.0690 40%, E = 0.0296 50%, E = 0.0085

60%, E = 0.0035 80%, E = 0.00075 100%, E = 0.0001522 of 23

github.com/RichardHerz

These notes have discussed the simplest structure used in neural networks.

There are many more network structures to learn about, including

• Deep networks with many hidden layers used in “deep learning” - essentially very
complex functions to relate complex inputs and outputs.

• Convolutional networks, in which various matrices are mathematically convoluted
with input submatrices and scanned across an input matrix in order to help
identify specific features, such as faces in an image or words in a sound
spectrum.

• Recurrent networks with feedforward and feedback of information, useful in
analyzing sequential inputs such as speech.

• Different types of networks arranged in parallel and series.

More Complex Neural Networks

Search the website of the MathWorks, makers of MATLAB, for their neural network tools

 https://mathworks.com

23 of 23

